No Arabic abstract
Due to the non-linearity of Hertzian contacts, the speed of sound in granular matter increases with pressure. Under gravity, the non-linear elastic description predicts that acoustic propagation is only possible through surface modes, called Rayleigh-Hertz modes and guided by the index gradient. Here we directly evidence these modes in a controlled laboratory experiment and use them to probe the elastic properties of a granular packing under vanishing confining pressure. The shape and the dispersion relation of both transverse and sagittal modes are compared to the prediction of non-linear elasticity that includes finite size effects. This allows to test the existence of a shear stiffness anomaly close to the jamming transition.
We have made experimental observations of the force networks within a two-dimensional granular silo similar to the classical system of Janssen. Models like that of Janssen predict that pressure within a silo saturates with depth as the result of vertical forces being redirected to the walls of the silo where they can then be carried by friction. By averaging ensembles of experimentally-obtained force networks in different ways, we compare the observed behavior with various predictions for granular silos. We identify several differences between the mean behavior in our system and that predicted by Janssen-like models: We find that the redirection parameter describing how the force network transfers vertical forces to the walls varies with depth. We find that changes in the preparation of the material can cause the pressure within the silo to either saturate or to continue building with depth. Most strikingly, we observe a non-linear response to overloads applied to the top of the material in the silo. For larger overloads we observe the previously reported giant overshoot effect where overload pressure decays only after an initial increase [G. Ovarlez et al., Phys. Rev. E 67, 060302(R) (2003)]. For smaller overloads we find that additional pressure propagates to great depth. This effect depends on the particle stiffness, as given for instance by the Youngs modulus, E, of the material from which the particles are made. Important measures include E, the unscreened hydrostatic pressure, and the applied load. These experiments suggest that when the load and the particle weight are comparable, particle elasticity acts to stabilize the force network, allowing non-linear network effects to be seen in the mean behavior.
We discuss the uniform shear flow of a fluidized granular bed composed of monodisperse Hertzian spheres. Considering high densities around the glass transition density of inelastic Hertzian spheres, we report kinetic theory expressions for the Newtonian viscosity as well as the Bagnold coefficient. We discuss the dependence of the transport coefficients on density and coefficient of restitution.
Neicu and Kudrolli observed experimentally spontaneous formation of the long-range orientational order and large-scale vortices in a system of vibrated macroscopic rods. We propose a phenomenological theory of this phenomenon, based on a coupled system of equations for local rods density and tilt. The density evolution is described by modified Cahn-Hilliard equation, while the tilt is described by the Ginzburg-Landau type equation. Our analysis shows that, in accordance to the Cahn-Hilliard dynamics, the islands of the ordered phase appear spontaneously and grow due to coarsening. The generic vortex solutions of the Ginzburg-Landau equation for the tilt correspond to the vortical motion of the rods around the cores which are located near the centers of the islands.
We explore the compaction dynamics of a granular pile after a hard quench from a liquid into the glassy regime. First, we establish that the otherwise athermal granular pile during tapping exhibits annealing behavior comparable to glassy polymer or colloidal systems. Like those other systems, the pile undergoes a glass transition and freezes into different non-equilibrium glassy states at low agitation for different annealing speeds, starting from the same initial equilibrium state at high agitation. Then, we quench the system instantaneously from the highly-agitated state to below the glass transition regime to study the ensuing aging dynamics. In this classical aging protocol, the density increases (i.e., the potential energy of the pile decreases) logarithmically over several decades in time. Instead of system-wide, thermodynamic measures, here we identify the intermittent, irreversible events (quakes) that actually drive the glassy relaxation process. We find that the event rate decelerates hyperbolically, which explains the observed increase in density when the integrated contribution to the downward displacements is evaluated. We argue that such a hyperbolically decelerating event rate is consistent with a log-Poisson process, also found as a universal feature of aging in many thermal glasses.
Large-scale three dimensional molecular dynamics simulations of hopper flow are presented. The flow rate of the system is controlled by the width of the aperture at the bottom. As the steady-state flow rate is reduced, the force distribution $P(f)$ changes only slightly, while there is a large change in the impulse distribution $P(i)$. In both cases, the distributions show an increase in small forces or impulses as the systems approach jamming, the opposite of that seen in previous Lennard-Jones simulations. This occurs dynamically as well for a hopper that transitions from a flowing to a jammed state over time. The final jammed $P(f)$ is quite distinct from a poured packing $P(f)$ in the same geometry. The change in $P(i)$ is a much stronger indicator of the approach to jamming. The formation of a peak or plateau in $P(f)$ at the average force is not a general feature of the approach to jamming.