Do you want to publish a course? Click here

Universal Features of Annealing and Aging in Compaction of Granular Piles

230   0   0.0 ( 0 )
 Added by Stefan Boettcher
 Publication date 2020
  fields Physics
and research's language is English
 Authors Paula A. Gago




Ask ChatGPT about the research

We explore the compaction dynamics of a granular pile after a hard quench from a liquid into the glassy regime. First, we establish that the otherwise athermal granular pile during tapping exhibits annealing behavior comparable to glassy polymer or colloidal systems. Like those other systems, the pile undergoes a glass transition and freezes into different non-equilibrium glassy states at low agitation for different annealing speeds, starting from the same initial equilibrium state at high agitation. Then, we quench the system instantaneously from the highly-agitated state to below the glass transition regime to study the ensuing aging dynamics. In this classical aging protocol, the density increases (i.e., the potential energy of the pile decreases) logarithmically over several decades in time. Instead of system-wide, thermodynamic measures, here we identify the intermittent, irreversible events (quakes) that actually drive the glassy relaxation process. We find that the event rate decelerates hyperbolically, which explains the observed increase in density when the integrated contribution to the downward displacements is evaluated. We argue that such a hyperbolically decelerating event rate is consistent with a log-Poisson process, also found as a universal feature of aging in many thermal glasses.

rate research

Read More

The sluggish and heterogeneous dynamics of glass forming liquids is frequently associated to the transient coexistence of two phases of particles, respectively with an high and low mobility. In the absence of a dynamical order parameter that acquires a transient bimodal shape, these phases are commonly identified empirically, which makes difficult investigating their relation with the structural properties of the system. Here we show that the distribution of single particle diffusivities can be accessed within a Continuous Time Random Walk description of the intermittent motion, and that this distribution acquires a transient bimodal shape in the deeply supercooled regime, thus allowing for a clear identification of the two coexisting phase. In a simple two-dimensional glass forming model, the dynamic phase coexistence is accompanied by a striking structural counterpart: the distribution of the crystalline-like order parameter becomes also bimodal on cooling, with increasing overlap between ordered and immobile particles. This simple structural signature is absent in other models, such as the three-dimesional Kob-Andersen Lennard-Jones mixture, where more sophisticated order parameters might be relevant. In this perspective, the identification of the two dynamical coexisting phases opens the way to deeper investigations of structure-dynamics correlations.
Motivated by the mean field prediction of a Gardner phase transition between a normal glass and a marginally stable glass, we investigate the off-equilibrium dynamics of three-dimensional polydisperse hard spheres, used as a model for colloidal or granular glasses. Deep inside the glass phase, we find that a sharp crossover pressure $P_{rm G}$ separates two distinct dynamical regimes. For pressure $P < P_{rm G}$, the glass behaves as a normal solid, displaying fast dynamics that quickly equilibrates within the glass free energy basin. For $P>P_{rm G}$, instead, the dynamics becomes strongly anomalous, displaying very large equilibration time scales, aging, and a constantly increasing dynamical susceptibility. The crossover at $P_{rm G}$ is strongly reminiscent of the one observed in three-dimensional spin-glasses in an external field, suggesting that the two systems could be in the same universality class, consistently with theoretical expectations.
Many clays, soils, biological tissues, foods, and coatings are shrinkable, granular materials: they are composed of packed, hydrated grains that shrink when dried. In many cases, these packings crack during drying, critically hindering applications. However, while cracking has been widely studied for bulk gels and packings of non-shrinkable grains, little is known about how packings of shrinkable grains crack. Here, we elucidate how grain shrinkage alters cracking during drying. Using experiments with model shrinkable hydrogel beads, we show that differential shrinkage can dramatically alter crack evolution during drying---in some cases, even causing cracks to spontaneously self-close. In other cases, packings shrink without cracking or crack irreversibly. We developed both granular and continuum models to quantify the interplay between grain shrinkage, poromechanics, packing size, drying rate, capillarity, and substrate friction on cracking. Guided by the theory, we also found that cracking can be completely altered by varying the spatial profile of drying. Our work elucidates the rich physics underlying cracking in shrinkable, granular packings, and yields new strategies for controlling crack evolution.
We study experimentally the fracture mechanisms of a model cohesive granular medium consisting of glass beads held together by solidified polymer bridges. The elastic response of this material can be controlled by changing the cross-linking of the polymer phase, for example. Here we show that its fracture toughness can be tuned over an order of magnitude by adjusting the stiffness and size of the polymer bridges. We extract a well-defined fracture energy from fracture testing under a range of material preparations. This energy is found to scale linearly with the cross-sectional area of the bridges. Finally, X-ray microcomputed tomography shows that crack propagation is driven by adhesive failure of about one polymer bridge per bead located at the interface, along with microcracks in the vicinity of the failure plane. Our findings provide insight to the fracture mechanisms of this model material, and the mechanical properties of disordered cohesive granular media in general.
We experimentally investigate the fluidization of a granular material subject to mechanical vibrations by monitoring the angular velocity of a vane suspended in the medium and driven by an external motor. On increasing the frequency we observe a re-entrant transition, as a jammed system first enters a fluidized state, where the vane rotates with high constant velocity, and then returns to a frictional state, where the vane velocity is much lower. While the fluidization frequency is material independent, the viscosity recovery frequency shows a clear dependence on the material, that we rationalize by relating this frequency to the balance between dissipative and inertial forces in the system. Molecular dynamics simulations well reproduce the experimental data, confirming the suggested theoretical picture.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا