Do you want to publish a course? Click here

The canonical fractional Galois ideal at s=0

155   0   0.0 ( 0 )
 Added by Paul Buckingham
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

The Stickelberger elements attached to an abelian extension of number fields conjecturally participate, under certain conditions, in annihilator relations involving higher algebraic K-groups. In [Victor P. Snaith, Starks conjecture and new Stickelberger phenomena, Canad. J. Math. 58 (2) (2006) 419--448], Snaith introduces canonical Galois modules hoped to appear in annihilator relations generalising and improving those involving Stickelberger elements. In this paper we study the first of these modules, corresponding to the classical Stickelberger element, and prove a connection with the Stark units in a special case.



rate research

Read More

The fractional Galois ideal of [Victor P. Snaith, Starks conjecture and new Stickelberger phenomena, Canad. J. Math. 58 (2) (2006) 419--448] is a conjectural improvement on the higher Stickelberger ideals defined at negative integers, and is expected to provide non-trivial annihilators for higher K-groups of rings of integers of number fields. In this article, we extend the definition of the fractional Galois ideal to arbitrary (possibly infinite and non-abelian) Galois extensions of number fields under the assumption of Starks conjectures, and prove naturality properties under canonical changes of extension. We discuss applications of this to the construction of ideals in non-commutative Iwasawa algebras.
123 - Paul Buckingham 2010
We propose a candidate, which we call the fractional Galois ideal after Snaiths fractional ideal, for replacing the classical Stickelberger ideal associated to an abelian extension of number fields. The Stickelberger ideal can be seen as gathering information about those $L$-functions of the extension which are non-zero at the special point $s = 0$, and was conjectured by Brumer to give annihilators of class-groups viewed as Galois modules. An earlier version of the fractional Galois ideal extended the Stickelberger ideal to include $L$-functions with a simple zero at $s = 0$, and was shown by the present author to provide class-group annihilators not existing in the Stickelberger ideal. The version presented in this article deals with $L$-functions of arbitrary order of vanishing at $s = 0$, and we give evidence using results of Popescu and Rubin that it is closely related to the Fitting ideal of the class-group, a canonical ideal of annihilators. Finally, we prove an equality involving Stark elements and class-groups originally due to Buyukboduk, but under a slightly different assumption, the advantage being that we need none of the Kolyvagin system machinery used in the original proof.
347 - Sara Arias-de-Reyna 2013
A strategy to address the inverse Galois problem over Q consists of exploiting the knowledge of Galois representations attached to certain automorphic forms. More precisely, if such forms are carefully chosen, they provide compatible systems of Galois representations satisfying some desired properties, e.g. properties that reflect on the image of the members of the system. In this article we survey some results obtained using this strategy.
In this paper we generalize results of P. Le Duff to genus n hyperelliptic curves. More precisely, let C/Q be a hyperelliptic genus n curve and let J(C) be the associated Jacobian variety. Assume that there exists a prime p such that J(C) has semistable reduction with toric dimension 1 at p. We provide an algorithm to compute a list of primes l (if they exist) such that the Galois representation attached to the l-torsion of J(C) is surjective onto the group GSp(2n, l). In particular we realize GSp(6, l) as a Galois group over Q for all primes l in [11, 500000].
We describe algorithms to compute fixed fields, minimal degree splitting fields and towers of radical extensions using Galois group computations. We also describe the computation of geometric Galois groups and their use in computing absolute factorizations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا