Do you want to publish a course? Click here

Secondary protons from ultra high energy cosmic ray nuclei: is the Greisen-Zatsepin-Kuzmin cutoff unavoidable?

100   0   0.0 ( 0 )
 Added by Veniamin Berezinsky
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss the production of ultra high energy secondary protons by cosmic ray primary nuclei propagating in the intergalactic space through Cosmic Microwave Background (CMB) and Infrared (IR) radiations. Under the assumption that only primary nuclei with a fixed atomic mass number $A_0$ are accelerated, the spectrum of secondary protons is calculated. It is found that for all $A_0$ the diffuse flux of secondary protons starts to dominate over that of primary nuclei at energy $E sim (1 - 2)times 10^{19}$ eV, and thus the standard Greisen-Zatsepin -Kuzmin (GZK) cutoff is produced.



rate research

Read More

Ultra-high-energy (UHE) cosmic rays (CRs) of energies $sim (10^{18}-10^{20})~{rm eV}$, accelerated in violent astrophysical environments, interact with cosmic background radiation fields via photo-hadronic processes, leading to strong attenuation. Typically, the Universe would become `opaque to UHE CRs after several tens of Mpc, setting the boundary of the Greisen-Zatsepin-Kuzmin (GZK) horizon. In this work, we investigate the contribution of sources beyond the conventional GZK horizon to the UHE CR flux observed on Earth, when photo-spallation of the heavy nuclear CRs is taken into account. We demonstrate this contribution is substantial, despite the strong attenuation of UHE CRs. A significant consequence is the emergence of an isotropic background component in the observed flux of UHE CRs, coexisting with the anisotropic foreground component that are associated with nearby sources. Multi-particle CR horizons, which evolve over redshift, are determined by the CR nuclear composition. Thus, they are dependent on the source populations and source evolutionary histories.
The cosmic-ray energy spectrum above 10^{18.5} eV is reported using the updated data set of the Akeno Giant Air Shower Array (AGASA) from February 1990 to October 1997. The energy spectrum extends beyond 10^{20} eV and the energy gap between the highest energy event and the others is being filled up with recently observed events. The spectral shape suggests the absence of the 2.7 K cutoff in the energy spectrum or a possible presence of a new component beyond the 2.7 K cutoff.
146 - V. Berezinsky 2009
The status of the Greisen-Zatsepin-Kuzmin (GZK) cutoff and pair-production dip in Ultra High Energy Cosmic Rays (UHECR) is discussed.They are the features in the spectrum of protons propagating through CMB radiation in extragalactic space, and discovery of these features implies that primary particles are mostly extragalactic protons. The spectra measured by AGASA, Yakutsk, HiRes and Auger detectors are in good agreement with the pair-production dip, and HiRes data have strong evidences for the GZK cutoff. The Auger spectrum,as presented at the 30th ICRC 2007, agrees with the GZK cutoff, too. The AGASA data agree well with the beginning of the GZK cutoff at E leq 80 EeV, but show the excess of events at higher energies, the origin of which is not understood. The difference in the absolute fluxes measured by different detectors disappears after energy shift within the systematic errors of each experiment.
We present an update on CRDB (https://lpsc.in2p3.fr/crdb), the cosmic-ray database for charged species. CRDB is based on MySQL, queried and sorted by jquery and table-sorter libraries, and displayed via PHP web pages through the AJAX protocol. We review the modifications made on the structure and outputs of the database since the first release (Maurin et al., 2014). For this update, the most important feature is the inclusion of ultra-heavy nuclei ($Z>30$), ultra-high energy nuclei (from $10^{15}$ to $10^{20}$ eV), and limits on antinuclei fluxes ($Zleq -1$ for $A>1$); more than 100 experiments, 350 publications, and 40000 data points are now available in CRDB. We also revisited and simplified how users can retrieve data and submit new ones. For questions and requests, please contact [email protected].
We investigate the production of ultra-high-energy cosmic ray (UHECR) in relativistic jets from low-luminosity active galactic nuclei (LLAGN). We start by proposing a model for the UHECR contribution from the black holes (BHs) in LLAGN, which present a jet power $P_{mathrm{j}} leqslant 10^{46}$ erg s$^{-1}$. This is in contrast to the opinion that only high-luminosity AGN can accelerate particles to energies $ geqslant 50$ EeV. We rewrite the equations which describe the synchrotron self-absorbed emission of a non-thermal particle distribution to obtain the observed radio flux density from sources with a flat-spectrum core and its relationship to the jet power. We find that the UHECR flux is dependent on the {it observed radio flux density, the distance to the AGN, and the BH mass}, where the particle acceleration regions can be sustained by the magnetic energy extraction from the BH at the center of the AGN. We use a complete sample of 29 radio sources with a total flux density at 5 GHz greater than 0.5 Jy to make predictions for the maximum particle energy, luminosity, and flux of the UHECRs from nearby AGN. These predictions are then used in a semi-analytical code developed in Mathematica (SAM code) as inputs for the Monte-Carlo simulations to obtain the distribution of the arrival direction at the Earth and the energy spectrum of the UHECRs, taking into account their deflection in the intergalactic magnetic fields. For comparison, we also use the CRPropa code with the same initial conditions as for the SAM code. Importantly, to calculate the energy spectrum we also include the weighting of the UHECR flux per each UHECR source. Next, we compare the energy spectrum of the UHECRs with that obtained by the Pierre Auger Observatory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا