No Arabic abstract
Long-range beam-beam interactions (parasitic crossings) were one of the main luminosity performance limitations for the lepton F-factory DAFNE in its original configuration. In particular, the parasitic crossings led to a substantial lifetime reduction of both beams in collision. This puts a limit on the maximum storable current and, as a consequence, on the achievable peak and integrated luminosity. In order to mitigate the problem, numerical and experimental studies of the parasitic crossings compensation by current-carrying wires have been done. During the operation for the KLOE experiment two such wires have been installed at both ends of the interaction region. They produced a relevant improvement in the lifetime of the weak beam (positrons) at the maximum current of the strong one (electrons) without luminosity loss, in agreement with the numerical predictions. The same compensating mechanism has been adopted during the run for the FINUDA experiment as well, with less evident benefits than in the previous case. The interplay between nonlinearities originating from the beam-beam interaction and the ring lattice has been studied by theoretical simulation and experimental measurements. Compensation procedures have been set up relying on the electromagnetic octupoles installed on both rings and used in addition to wire compensation. In this paper the parasitic crossings effects in the DAFNE interaction regions and their compensation by wires and octupoles are described. A detailed theoretical analysis of the interplay about different non-linearities is presented; eventually experimental measurements and observations are discussed.
The results of 2002 DAFNE operation for the two experiments KLOE and DEAR are described. During 2003 a long shutdown has been dedicated to the installation of new Interaction Regions (IR) and to hardware modifications and upgrades. In the last section optics studies and performances expectations for the new machine configuration are reported.
DAFNE operation restarted in September 2003, after a six month shut-down for the installation of FINUDA, a magnetic detector dedicated to the study of hypernuclear physics. FINUDA is the third experiment running on DAFNE and operates while keeping on place the other detector KLOE. During the shut-down both Interaction Regions have been equipped with remotely controlled quadrupoles in order to operate at different solenoid fields. Among many other hardware upgrades one of the most significant is the reshaping of the wiggler pole profile to improve the field quality and the machine dynamic aperture. Commissioning of the collider in the new configuration has been completed in short time. The peak luminosity delivered to FINUDA has reached 6 10^31 s-1cm-2, with a daily integrated value close to 4 pb-1.
The Phi-factory DAFNE was upgraded in the second half of 2007 in order to implement a recently proposed scheme of crab waist collisions aimed at substantial luminosity increase. Commissioning of the modified collider started in November 2007. In this paper we briefly describe the crab waist collision concept and discuss in detail the DAFNE hardware upgrade and obtained experimental results.
After a long preparatory phase, including a wide hardware consolidation program, the Italian lepton collider DAFNE, is now systematically delivering data to the KLOE-2 experiment. In approximately 200 days of operation 1 fb-1 has been given to the detector limiting the background to a level compatible with an efficient data acquisition. Instantaneous and maximum daily integrated luminosity measured, so far, are considerably higher with respect to the previous KLOE runs, and are: L(inst) ~ 2.0 1032 cm-2s-1, and L(day) ~ 12.5 pb-1 respectively. A general review concerning refurbishing activities, machine optimization efforts and data taking performances is presented and discussed.
DAFNE, the Frascati F-factory, has recently completed experimental runs for the three main detectors, KLOE, FINUDA and DEAR achieving 1.6x10E+32 cm-2s-1 peak and 10 pb-1 daily integrated luminosities. Improving these results by a significant factor requires changing the collision scheme. For this reason, in view of the SIDDHARTA detector installation, relevant modifications of the machine have been realized, aimed at implementing a new collision scheme based on a large Piwinski angle and crab-waist, together with several other hardware modifications involving injection kickers, bellows and beam pipe sections.