In the recent paper Mutation in triangulated categories and rigid Cohen-Macaulay modules Iyama and Yoshino consider two interesting examples of isolated singularities over which it is possible to classify the indecomposable maximal Cohen-Macaulay modules in terms of linear algebra data. In this paper we present two new approaches to these examples. In the first approach we give a relation with cluster categories. In the second approach we use Orlovs result on the graded singularity category. We obtain some new results on the singularity category of isolated singularities which may be interesting in their own right.
Let R be a local domain, v a valuation of its quotient field centred in R at its maximal ideal. We investigate the relationship between R^h, the henselisation of R as local ring, and {~v}, the henselisation of the valuation v, by focussing on the recent result by de Felipe and Teissier referred to in the title. We give a new proof that simplifies the original one by using purely algebraic arguments. This proof is moreover constructive in the sense of Bishop and previous work of the authors, and allows us to obtain as a by-product a (slight) generalisation of the theorem by de Felipe and Teissier.
Using Macaulays correspondence we study the family of Artinian Gorenstein local algebras with fixed symmetric Hilbert function decomposition. As an application we give a new lower bound for cactus varieties of the third Veronese embedding. We discuss the case of cubic surfaces, where interesting phenomena occur.
We define specific multiplicities on the braid arrangement by using edge-bicolored graphs. To consider their freeness, we introduce the notion of bicolor-eliminable graphs as a generalization of Stanleys classification theory of free graphic arrangements by chordal graphs. This generalization gives us a complete classification of the free multiplicities defined above. As an application, we prove one direction of a conjecture of Athanasiadis on the characterization of the freeness of the deformation of the braid arrangement in terms of directed graphs.
Hilbert-Kunz multiplicity and F-signature are numerical invariants of commutative rings in positive characteristic that measure severity of singularities: for a regular ring both invariants are equal to one and the converse holds under mild assumptions. A natural question is for what singular rings these invariants are closest to one. For Hilbert--Kunz multiplicity this question was first considered by the last two authors and attracted significant attention. In this paper, we study this question, i.e., an upper bound, for F-signature and revisit lower bounds on Hilbert--Kunz multiplicity.
Affine ind-varieties are infinite dimensional generalizations of algebraic varieties which appear naturally in many different contexts, in particular in the study of automorphism groups of affine spaces. In this article we introduce and develop the basic algebraic theory of topologically integrable derivations of complete topological rings. We establish a bijective algebro-geometric correspondence between additive group actions on affine ind-varieties and topologically integrable derivations of their coordinate pro-rings which extends the classical fruitful correspondence between additive group actions on affine varieties and locally nilpotent derivations of their coordinate rings.