Do you want to publish a course? Click here

Conformal Properties of an Evaporating Black Hole Model

94   0   0.0 ( 0 )
 Added by Paul Tod
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use a new, conformally-invariant method of analysis to test incomplete null geodesics approaching the singularity in a model of an evaporating black hole for the possibility of extensions of the conformal metric. In general, a local conformal extension is possible from the future but not from the past.



rate research

Read More

64 - Adam Levi , Ehud Eilon , Amos Ori 2016
We employ a recently developed mode-sum regularization method to compute the renormalized stress-energy tensor of a quantum field in the Kerr background metric (describing a stationary spinning black hole). More specifically, we consider a minimally-coupled massless scalar field in the Unruh vacuum state, the quantum state corresponding to an evaporating black hole. The computation is done here for the case $a=0.7M$, using two different variants of the method: $t$-splitting and $varphi$-splitting, yielding good agreement between the two (in the domain where both are applicable). We briefly discuss possible implications of the results for computing semiclassical corrections to certain quantities, and also for simulating dynamical evaporation of a spinning black hole.
We revisit the physical effects of discrete $mathbb{Z}_p$ gauge charge on black hole thermodynamics, building on the seminal work of Coleman, Preskill, and Wilczek. Realising the discrete theory from the spontaneous breaking of an Abelian gauge theory, we consider the two limiting cases of interest, depending on whether the Compton wavelength of the massive vector is much smaller or much larger than the size of the black hole -- the so-called thin- and thick-string limits respectively. We find that the qualitative effect of discrete hair on the mass-temperature relationship is the same in both regimes, and similar to that of unbroken $U(1)$ charge: namely, a black hole carrying discrete gauge charge is always colder than its uncharged counterpart. In the thick-string limit, our conclusions bring into question some of the results of Coleman et al., as we discuss. Further, by considering the system to be enclosed within a finite cavity, we argue how the unbroken limit may be smoothly defined, and the unscreened electric field of the standard Reissner-Nordstrom solution recovered.
We show that the apparent horizon and the region near $r=0$ of an evaporating charged, rotating black hole are timelike. It then follows that for black holes in nature, which invariably have some rotation, have a channel, via which classical or quantum information can escape to the outside, while the black hole shrinks in size. We discuss implications for the information loss problem.
Quantum extremal islands reproduce the unitary Page curve of an evaporating black hole. This has been derived by including replica wormholes in the gravitational path integral, but for the transient, evaporating black holes most relevant to Hawkings paradox, these wormholes have not been analyzed in any detail. In this paper we study replica wormholes for black holes formed by gravitational collapse in Jackiw-Teitelboim gravity, and confirm that they lead to the island rule for the entropy. The main technical challenge is that replica wormholes rely on a Euclidean path integral, while the quantum extremal islands of an evaporating black hole exist only in Lorentzian signature. Furthermore, the Euclidean equations are non-local, so it is unclear how to bridge the gap between the Euclidean path integral and the local, Lorentzian dynamics of an evaporating black hole. We address these issues with Schwinger-Keldysh techniques and show how the non-local equations reduce to the local `boundary particle description in special cases.
210 - B. Eslam Panah , , S. H. Hendi 2019
In this work, a correspondence between black hole solutions of conformal and massive theories of gravity is found. It is seen that this correspondence imposes some constraints on parameters of these theories. What is more, a relation between the mass of black holes and the parameters of massive gravity is found. Indeed, the acceptable ranges of massive gravity parameters ($c_{1}$ and $c_{2}$) are found. It is shown that by considering the positive mass of black holes, some ranges of $c_{1}$ and $c_{2}$ are acceptable.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا