Do you want to publish a course? Click here

LaFeAsO$_{1-x}$F$_x$: A low carrier density superconductor near itinerant magnetism

196   0   0.0 ( 0 )
 Added by David Singh
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Density functional studies of 26K superconducting LaFeAs(O,F) are reported. We find a low carrier density, high density of states, $N(E_F)$ and modest phonon frequencies relative to $T_c$. The high $N(E_F)$ leads to proximity to itinerant magnetism, with competing ferromagnetic and antiferromagnetic fluctuations and the balance between these controlled by doping level. Thus LaFeAs(O,F) is in a unique class of high $T_c$ superconductors: high $N(E_F)$ ionic metals near magnetism.



rate research

Read More

205 - S. Sharma 2009
Using state-of-the-art first-principles calculations we study the magnetic behaviour of CeOFeAs. We find the Ce layer moments oriented perpendicular to those of the Fe layers. An analysis of incommensurate magnetic structures reveals that the Ce-Ce magnetic coupling is rather weak with, however, a strong Fe-Ce coupling. Comparison of the origin of the tetragonal to orthorhombic structural distortion in CeOFeAs and LaOFeAs show marked differences; in CeOFeAs the distortion is stabilized by a lowering of spectral weight at the Fermi level, while in LaOFeAs by a reduction in magnetic frustration. Finally, we investigate the impact of electron doping upon CeOFeAs and show that while the ground state Fe moment remains largely unchanged by doping, the stability of magnetic order goes to zero at a doping that corresponds well to the vanishing of the Neel temperature.
89 - C. Hess , H. Grafe , A. Kondrat 2016
Orbital ordering has recently emerged as another important state in iron based superconductors, and its role for superconductivity as well as its connection to magnetic order and orthorhombic lattice distortion are heavily debated. In order to search for signatures of this so-called nematic phase in oxypnictides, we revisit the normal state properties of the pnictide superconductor LaFeAsO$_{1-x}$F$_x$ with a focus on resistivity, Nernst effect, thermal expansion, and $^{75}$As NMR data. The transport properties at the underdoped level $x=0.05$ exhibit pronounced anomalies at about the same temperature where undoped LaFeAsO develops long-range nematic ordering, i.e. at about 160 K. Furthermore, the $^{75}$As-NMR spin-lattice relaxation rate $1/(T_1T)$ reveals a progressive slowing down of spin fluctuations. Yet, long-range magnetic order and also a detectable orthorhombic lattice distortion are absent. Thus, we conclude from the data that short-range orbital-nematic ordering or a slowly fluctuating form of it sets in near 160 K. Remarkably, all anomalies in the transport and also the indications of slow spin fluctuations disappear close to optimal doping $x=0.1$ which suggests that in LaFeAsO$_{1-x}$F$_x$ the nematic phase actually competes with superconductivity.
Spectroscopic ellipsometry is used to determine the dielectric function of the superconducting LaFeAsO$_{0.9}$F$_{0.1}$ ($T_c$ = 27 K) and undoped LaFeAsO polycrystalline samples in the wide range 0.01-6.5 eV at temperatures 10 $leq T leq$ 350 K. The free charge carrier response in both samples is heavily damped with the effective carrier density as low as 0.040$pm$0.005 electrons per unit cell. The spectral weight transfer in the undoped LaFeAsO associated with opening of the pseudogap at about 0.65 eV is restricted at energies below 2 eV. The spectra of superconducting LaFeAsO$_{0.9}$F$_{0.1}$ reveal a significant transfer of the spectral weight to a broad optical band above 4 eV with increasing temperature. Our data may imply that the electronic states near the Fermi surface are strongly renormalized due to electron-phonon and/or electron-electron interactions.
480 - Q. Huang , Jun Zhao , J. W. Lynn 2008
We use neutron scattering to study the structural distortion and antiferromagnetic (AFM) order in LaFeAsO$_{1-x}$F$_{x}$ as the system is doped with fluorine (F) to induce superconductivity. In the undoped state, LaFeAsO exhibits a structural distortion, changing the symmetry from tetragonal (space group $P4/nmm$) to orthorhombic (space group $Cmma$) at 155 K, and then followed by an AFM order at 137 K. Doping the system with F gradually decreases the structural distortion temperature, but suppresses the long range AFM order before the emergence of superconductivity. Therefore, while superconductivity in these Fe oxypnictides can survive in either the tetragonal or the orthorhombic crystal structure, it competes directly with static AFM order.
Upon doping with Tl the narrow band-gap semiconductor PbTe exhibits anomalously high temperature superconductivity despite a very low carrier density as well as signatures of the Kondo effect despite an absence of magnetic moments. These phenomena have been explained by invoking 2$e$ fluctuations of the valence of the Tl dopants but a direct measurement of the mixed-valency implied by such a mechanism has not been reported to date. In this work we present the unambiguous observation of multiple valences of Tl in Tl-doped PbTe via photo emission spectroscopy measurements. It is shown via our quantitative analysis that the suppression of the carrier density at compositions exhibiting superconductivity and Kondo-like behaviour is fully accounted for by mixed valency, thus arguing strongly against a self-compensation scenario proposed elsewhere for this material and strengthening the case for valence fluctuation models. In addition to the identification of Tl$^+$ and Tl$^{3+}$ a possible third intermediate local charge-density is tentatively suggested by full fits to the data, the implications of which are discussed in the context of the charge-Kondo effect.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا