Do you want to publish a course? Click here

The Impact of Galaxy Cluster Mergers on Cosmological Parameter Estimation from Surveys of the Sunyaev-Zeldovich Effect

228   0   0.0 ( 0 )
 Added by Daniel Wik
 Publication date 2008
  fields Physics
and research's language is English
 Authors Daniel R. Wik




Ask ChatGPT about the research

Sensitive surveys of the Cosmic Microwave Background will detect thousands of galaxy clusters via the Sunyaev-Zeldovich (SZ) effect. Two SZ observables, the central or maximum and integrated Comptonization parameters y_max and Y, relate in a simple way to the total cluster mass, which allow the construction of mass functions (MFs) that can be used to estimate cosmological parameters such as Omega_M, sigma_8, and the dark energy parameter w. However, clusters form from the mergers of smaller structures, events that can disrupt the equilibrium of intracluster gas upon which SZ-M relations rely. From a set of N-body/hydrodynamical simulations of binary cluster mergers, we calculate the evolution of Y and y_max over the course of merger events and find that both parameters are transiently boosted, primarily during the first core passage. We then use a semi-analytic technique developed by Randall et al. (2002) to estimate the effect of merger boosts on the distribution functions YF and yF of Y and y_max, respectively, via cluster merger histories determined from extended Press-Schechter (PS) merger trees. We find that boosts do not induce an overall systematic effect on YFs, and the values of Omega_M, sigma_8, and w were returned to within 2% of values expected from the nonboosted YFs. The boosted yFs are significantly biased, however, causing Omega_M to be underestimated by 15-45%, sigma_8 to be overestimated by 10-25%, and w to be pushed to more negative values by 25-45%. We confirm that the integrated SZ effect, Y, is far more robust to mergers than y_max, as previously reported by Motl et al. (2005) and similarly found for the X-ray equivalent Y_X, and we conclude that Y is the superior choice for constraining cosmological parameters.

rate research

Read More

We discuss how future cluster surveys can constrain cosmological parameters with particular reference to the properties of the dark energy component responsible for the observed acceleration of the universe by probing the evolution of the surface density of clusters as a function of redshift. We explain how the abundance of clusters selected using their Sunyaev-Zeldovich effect can be computed as a function of the observed flux and redshift taking into account observational effects due to a finite beam-size. By constructing an idealized set of simulated observations for a fiducial model, we forecast the likely constraints that might be possible for a variety of proposed surveys which are assumed to be flux limited. We find that Sunyaev-Zeldovich cluster surveys can provide vital complementary information to those expected from surveys for supernovae. We analyse the impact of statistical and systematic uncertainties and find that they only slightly limit our ability to constrain the equation of state of the dark energy component.
Studying galaxy clusters through their Sunyaev-Zeldovich (SZ) imprint on the Cosmic Microwave Background has many important advantages. The total SZ signal is an accurate and precise tracer of the total pressure in the intra-cluster medium and of cluster mass, the key observable for using clusters as cosmological probes. Band 5 observations with SKA-MID towards cluster surveys from the next generation of X-ray telescopes such as e-ROSITA and from Euclid will provide the robust mass estimates required to exploit these samples. This will be especially important for high redshift systems, arising from the SZs unique independence to redshift. In addition, galaxy clusters are very interesting astrophysical systems in their own right, and the SKAs excellent surface brightness sensitivity down to small angular scales will allow us to explore the detailed gas physics of the intra-cluster medium.
We consider the optimum depth of a cluster survey selected using the Sunyaev-Zeldovich effect. By using simple models for the evolution of the cluster mass function and detailed modeling for a variety of observational techniques, we show that the optimum survey yield is achieved when the average size of the clusters selected is close to the size of the telescope beam. For a total power measurement, we compute the optimum noise threshold per beam as a function of the beam size and then discuss how our results can be used in more general situations. As a by-product we gain some insight into what is the most advantageous instrumental set-up. In the case of beam switching observations one is not severely limited if one manages to set the noise threshold close to the point which corresponds to the optimum yield. By defining a particular reference configuration, we show how our results can be applied to interferometer observations. Considering a variety of alternative scenarios, we discuss how robust our conclusions are to modifications in the cluster model and cosmological parameters. The precise optimum is particularly sensitive to the amplitude of fluctuations and the profile of the gas in the cluster.
We discuss how the space of possible cosmological parameters is constrained by the angular diameter distance function, D_A(z), as measured using the SZ/X-ray method which combines Sunyaev-Zeldovich (SZ) effect and X-ray brightness data for clusters of galaxies. New X-ray satellites, and ground-based interferometers dedicated to SZ observations, should soon lead to D_A(z) measurements limited by systematic rather than random error. We analyze the systematic and random error budgets to make a realistic estimate of the accuracy achievable in the determination of (Omega_m,Lambda,h), the density parameters of matter and cosmological constant, and the dimensionless Hubble constant, using D_A(z) derived from the SZ/X-ray method, and the position of the first ``Doppler peak in the cosmic microwave background fluctuations. We briefly study the effect of systematic errors. We find that Omega_m, Lambda, and w are affected, but h is not by systematic errors which grow with redshift. With as few as 70 clusters, each providing a measurement of D_A(z) with a 7% random and 5% systematic error, Omega_m can be constrained to +/-0.2, Lambda to +/-0.2, and h to +/-0.11 (all at 3 sigma). We also estimate constraints for the alternative three-parameter set (Omega_m,w,h), where w is the equation of state parameter. The measurement of D_A(z) provides constraints complementary to those from the number density of clusters in redshift space. A sample of 70 clusters (D_A measured with the same accuracy as before) combined with cluster evolution results (or a known matter density), can constrain w within +/-0.45 (at 3 sigma). Studies of X-ray and SZ properties of clusters of galaxies promise an independent and powerful test for cosmological parameters.
We study the effects of two popular modified gravity theories, which incorporate very different screening mechanisms, on the angular power spectra of the thermal (tSZ) and kinematic (kSZ) components of the Sunyaev-Zeldovich effect. Using the first cosmological simulations that simultaneously incorporate both screened modified gravity and a complete galaxy formation model, we find that the tSZ and kSZ power spectra are significantly enhanced by the strengthened gravitational forces in Hu-Sawicki $f(R)$ gravity and the normal-branch Dvali-Gabadadze-Porrati model. Employing a combination of non-radiative and full-physics simulations, we find that the extra baryonic physics present in the latter acts to suppress the tSZ power on angular scales $lgtrsim3000$ and the kSZ power on all tested scales, and this is found to have a substantial effect on the model differences. Our results indicate that the tSZ and kSZ power can be used as powerful probes of gravity on large scales, using data from current and upcoming surveys, provided sufficient work is conducted to understand the sensitivity of the constraints to baryonic processes that are currently not fully understood.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا