Do you want to publish a course? Click here

The impact of modified gravity on the Sunyaev-Zeldovich effect

74   0   0.0 ( 0 )
 Added by Myles Mitchell
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the effects of two popular modified gravity theories, which incorporate very different screening mechanisms, on the angular power spectra of the thermal (tSZ) and kinematic (kSZ) components of the Sunyaev-Zeldovich effect. Using the first cosmological simulations that simultaneously incorporate both screened modified gravity and a complete galaxy formation model, we find that the tSZ and kSZ power spectra are significantly enhanced by the strengthened gravitational forces in Hu-Sawicki $f(R)$ gravity and the normal-branch Dvali-Gabadadze-Porrati model. Employing a combination of non-radiative and full-physics simulations, we find that the extra baryonic physics present in the latter acts to suppress the tSZ power on angular scales $lgtrsim3000$ and the kSZ power on all tested scales, and this is found to have a substantial effect on the model differences. Our results indicate that the tSZ and kSZ power can be used as powerful probes of gravity on large scales, using data from current and upcoming surveys, provided sufficient work is conducted to understand the sensitivity of the constraints to baryonic processes that are currently not fully understood.

rate research

Read More

Starting from a covariant formalism of the Sunyaev-Zeldovich effect for the thermal and non-thermal distributions, we derive the frequency redistribution function identical to Wrights method assuming the smallness of the photon energy (in the Thomson limit). We also derive the redistribution function in the covariant formalism in the Thomson limit. We show that two redistribution functions are mathematically equivalent in the Thomson limit which is fully valid for the cosmic microwave background photon energies. We will also extend the formalism to the kinematical Sunyaev-Zeldovich effect. With the present formalism we will clarify the situation for the discrepancy existed in the higher order terms of the kinematical Sunyaev-Zeldovich effect.
Cosmological transverse momentum fields, whose directions are perpendicular to Fourier wave vectors, induce temperature anisotropies in the cosmic microwave background via the kinetic Sunyaev-Zeldovich (kSZ) effect. The transverse momentum power spectrum contains the four-point function of density and velocity fields, $langledeltadelta v vrangle$. In the post-reionization epoch, nonlinear effects dominate in the power spectrum. We use perturbation theory and cosmological $N$-body simulations to calculate this nonlinearity. We derive the next-to-leading order expression for the power spectrum with a particular emphasis on the connected term that has been ignored in the literature. While the contribution from the connected term on small scales ($k>0.1,h,rm{Mpc}^{-1}$) is subdominant relative to the unconnected term, we find that its contribution to the kSZ power spectrum at $ell = 3000$ at $z<6$ can be as large as ten percent of the unconnected term, which would reduce the allowed contribution from the reionization epoch ($z>6$) by twenty percent. The power spectrum of transverse momentum on large scales is expected to scale as $k^2$ as a consequence of momentum conservation. We show that both the leading and the next-to-leading order terms satisfy this scaling. In particular, we find that both of the unconnected and connected terms are necessary to reproduce $k^2$.
A recent stacking analysis of Planck HFI data of galaxy clusters (Hurier 2016) allowed to derive the cluster temperatures by using the relativistic corrections to the Sunyaev-Zeldovich effect (SZE). However, the temperatures of high-temperature clusters, as derived from this analysis, resulted to be basically higher than the temperatures derived from X-ray measurements, at a moderate statistical significance of $1.5sigma$. This discrepancy has been attributed by Hurier (2016) to calibration issues. In this paper we discuss an alternative explanation for this discrepancy in terms of a non-thermal SZE astrophysical component. We find that this explanation can work if non-thermal electrons in galaxy clusters have a low value of their minimum momentum ($p_1sim0.5-1$), and if their pressure is of the order of $20-30%$ of the thermal gas pressure. Both these conditions are hard to obtain if the non-thermal electrons are mixed with the hot gas in the intra cluster medium, but can be possibly obtained if the non-thermal electrons are mainly confined in bubbles with high content of non-thermal plasma and low content of thermal plasma, or in giant radio lobes/relics located in the outskirts of clusters. In order to derive more precise results on the properties of non-thermal electrons in clusters, and in view of more solid detections of a discrepancy between X-rays and SZE derived clusters temperatures that cannot be explained in other ways, it would be necessary to reproduce the full analysis done by Hurier (2016) by adding systematically the non-thermal component of the SZE.
We propose a novel technique to separate the late-time, post-reionization component of the kinetic Sunyaev-Zeldovich (kSZ) effect from the contribution to it from a (poorly understood and probably patchy) reionization history. The kSZ effect is one of the most promising probe of the {em missing baryons} in the Universe. We study the possibility of reconstructing it in three dimensions (3D), using future spectroscopic surveys such as the Euclid survey. By reconstructing a 3D template from galaxy density and peculiar velocity fields from spectroscopic surveys we cross-correlate the estimator against CMB maps. The resulting cross-correlation can help us to map out the kSZ contribution to CMB in 3D as a function of redshift thereby extending previous results which use tomographic reconstruction. This allows the separation of the late time effect from the contribution owing to reionization. By construction, it avoids contamination from foregrounds, primary CMB, tSZ effect as well as from star forming galaxies. Due to a high number density of galaxies the signal-to-noise (S/N) for such cross-correlational studies are higher, compared to the studies involving CMB power spectrum analysis. Using a spherical Bessel-Fourier (sFB) transform we introduce a pair of 3D power-spectra: ${cal C}^{parallel}_ell(k)$ and ${cal C}^{perp}_ell(k)$ that can be used for this purpose. We find that in a future spectroscopic survey with near all-sky coverage and a survey depth of $zapprox 1$, reconstruction of ${cal C}^{perp}_ell(k)$ can be achieved in a few radial wave bands $kapprox(0.01-0.5 h^{-1}rm Mpc)$ with a S/N of upto ${cal O}(10)$ for angular harmonics in the range $ell=(200-2000)$ (abrdiged).
Studying galaxy clusters through their Sunyaev-Zeldovich (SZ) imprint on the Cosmic Microwave Background has many important advantages. The total SZ signal is an accurate and precise tracer of the total pressure in the intra-cluster medium and of cluster mass, the key observable for using clusters as cosmological probes. Band 5 observations with SKA-MID towards cluster surveys from the next generation of X-ray telescopes such as e-ROSITA and from Euclid will provide the robust mass estimates required to exploit these samples. This will be especially important for high redshift systems, arising from the SZs unique independence to redshift. In addition, galaxy clusters are very interesting astrophysical systems in their own right, and the SKAs excellent surface brightness sensitivity down to small angular scales will allow us to explore the detailed gas physics of the intra-cluster medium.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا