The generation of entangled photon pairs by parametric down--conversion from solid state CW lasers with small coherence time is theoretically and experimentally analyzed. We consider a compact and low-cost setup based on a two-crystal scheme with Type-I phase matching. We study the effect of the pump coherence time over the entangled state visibility and over the violation of Bells inequality, as a function of the crystals length. The full density matrix is reconstructed by quantum tomography. The proposed theoretical model is verified using a purification protocol based on a compensation crystal.
Quantum networks are essential for realising distributed quantum computation and quantum communication. Entangled photons are a key resource, with applications such as quantum key distribution, quantum relays, and quantum repeaters. All components integrated in a quantum network must be synchronised and therefore comply with a certain clock frequency. In quantum key distribution, the most mature technology, the current standard clock rate is 1GHz. Here we show the first electrically pulsed sub-Poissonian entangled photon source compatible with existing fiber networks operating at this clock rate. The entangled LED is based on InAs/InP quantum dots emitting in the main telecom window, with a multi-photon probability of less than 10% per emission cycle and a maximum entanglement fidelity of 89%. We use this device to demonstrate GHz clocked distribution of entangled qubits over an installed fiber network between two points 4.6km apart.
Energy-time entangled photons are critical in many quantum optical phenomena and have emerged as important elements in quantum information protocols. Entanglement in this degree of freedom often manifests itself on ultrafast timescales making it very difficult to detect, whether one employs direct or interferometric techniques, as photon-counting detectors have insufficient time resolution. Here, we implement ultrafast photon counters based on nonlinear interactions and strong femtosecond laser pulses to probe energy-time entanglement in this important regime. Using this technique and single-photon spectrometers, we characterize all the spectral and temporal correlations of two entangled photons with femtosecond resolution. This enables the witnessing of energy-time entanglement using uncertainty relations and the direct observation of nonlocal dispersion cancellation on ultrafast timescales. These techniques are essential to understand and control the energy-time degree of freedom of light for ultrafast quantum optics.
Entangled photon pairs have been promised to deliver a substantial quantum advantage for two-photon absorption spectroscopy. However, recent work has challenged the previously reported magnitude of quantum enhancement in two-photon absorption. Here, we present an experimental comparison of sum-frequency generation and molecular absorption, each driven by isolated photon pairs. We establish an upper bound on the enhancement for entangled-two-photon absorption in Rhodamine-6G, which lies well below previously reported values.
While two-photon absorption (TPA) and other forms of nonlinear interactions of molecules with isolated time-frequency-entangled photon pairs (EPP) have been predicted to display a variety of fascinating effects, their potential use in practical quantum-enhanced molecular spectroscopy requires close examination. This paper presents a detailed theoretical study of quantum-enhanced TPA by both photon-number correlations and spectral correlations, including an account of the deleterious effects of dispersion. While such correlations in EPP created by spontaneous parametric down conversion can increase the TPA rate significantly in the regime of extremely low optical flux, we find that for typical molecules in solution this regime corresponds to such low TPA event rates as to be unobservable in practice. Our results support the usefulness of EPP spectroscopy in atomic or other narrow-linewidth systems, while questioning the efficacy of such approaches for broadband systems including molecules in solution.
The realisation of a triggered entangled photon source will be of great importance in quantum information, including for quantum key distribution and quantum computation. We show here that: 1) the source reported in ``A semiconductor source of triggered entangled photon pairs[1. Stevenson et al., Nature 439, 179 (2006)]} is not entangled; 2) the entanglement indicators used in Ref. 1 are inappropriate, relying on assumptions invalidated by their own data; and 3) even after simulating subtraction of the significant quantity of background noise, their source has insignificant entanglement.
Simone Cialdi
,Fabrizio Castelli
,Matteo G. A. Paris
.
(2008)
.
"Properties of entangled photon pairs generated by a CW laser with small coherence time: theory and experiment"
.
Matteo G. A. Paris
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا