No Arabic abstract
Energy-time entangled photons are critical in many quantum optical phenomena and have emerged as important elements in quantum information protocols. Entanglement in this degree of freedom often manifests itself on ultrafast timescales making it very difficult to detect, whether one employs direct or interferometric techniques, as photon-counting detectors have insufficient time resolution. Here, we implement ultrafast photon counters based on nonlinear interactions and strong femtosecond laser pulses to probe energy-time entanglement in this important regime. Using this technique and single-photon spectrometers, we characterize all the spectral and temporal correlations of two entangled photons with femtosecond resolution. This enables the witnessing of energy-time entanglement using uncertainty relations and the direct observation of nonlocal dispersion cancellation on ultrafast timescales. These techniques are essential to understand and control the energy-time degree of freedom of light for ultrafast quantum optics.
The generation of ultrafast laser pulses and the reconstruction of their electric fields is essential for many applications in modern optics. Quantum optical fields can also be generated on ultrafast time scales, however, the tools and methods available for strong laser pulses are not appropriate for measuring the properties of weak, possibly entangled pulses. Here, we demonstrate a method to reconstruct the joint-spectral amplitude of a two-photon energy-time entangled state from joint measurements of the frequencies and arrival times of the photons, and the correlations between them. Our reconstruction method is based on a modified Gerchberg-Saxton algorithm. Such techniques are essential to measure and control the shape of ultrafast entangled photon pulses.
Many quantum advantages in metrology and communication arise from interferometric phenomena. Such phenomena can occur on ultrafast time scales, particularly when energy-time entangled photons are employed. These have been relatively unexplored as their observation necessitates time resolution much shorter than conventional photon counters. Integrating nonlinear optical gating with conventional photon counters can overcome this limitation and enable subpicosecond time resolution. Here, using this technique and a Franson interferometer, we demonstrate high-visibility quantum interference with two entangled photons, where the one- and two-photon coherence times are both subpicosecond. We directly observe the spectral and temporal interference patterns, measure a visibility in the two-photon coincidence rate of $(85.3pm0.4)%$, and report a CHSH-Bell parameter of $2.42pm0.02$, violating the local-hidden variable bound by 21 standard deviations. The demonstration of energy-time entanglement with ultrafast interferometry provides opportunities for examining and exploiting entanglement in previously inaccessible regimes.
Photonic time-frequency entanglement is a promising resource for quantum information processing technologies. We investigate swapping of continuous-variable entanglement in the time-frequency degree of freedom using three-wave mixing in the low-gain regime with the aim of producing heralded biphoton states with high purity and low multi-pair probability. Heralding is achieved by combining one photon from each of two biphoton sources via sum-frequency generation to create a herald photon. We present a realistic model with pulsed pumps, investigate the effects of resolving the frequency of the herald photon, and find that frequency-resolving measurement of the herald photon is necessary to produce high-purity biphotons. We also find a trade-off between the rate of successful entanglement swapping and both the purity and quantified entanglement resource (negativity) of the heralded biphoton state.
Entangled photon pairs have been promised to deliver a substantial quantum advantage for two-photon absorption spectroscopy. However, recent work has challenged the previously reported magnitude of quantum enhancement in two-photon absorption. Here, we present an experimental comparison of sum-frequency generation and molecular absorption, each driven by isolated photon pairs. We establish an upper bound on the enhancement for entangled-two-photon absorption in Rhodamine-6G, which lies well below previously reported values.
Multiplexed quantum memories capable of storing and processing entangled photons are essential for the development of quantum networks. In this context, we demonstrate the simultaneous storage and retrieval of two entangled photons inside a solid-state quantum memory and measure a temporal multimode capacity of ten modes. This is achieved by producing two polarization entangled pairs from parametric down conversion and mapping one photon of each pair onto a rare-earth-ion doped (REID) crystal using the atomic frequency comb (AFC) protocol. We develop a concept of indirect entanglement witnesses, which can be used as Schmidt number witness, and we use it to experimentally certify the presence of more than one entangled pair retrieved from the quantum memory. Our work puts forward REID-AFC as a platform compatible with temporal multiplexing of several entangled photon pairs along with a new entanglement certification method useful for the characterisation of multiplexed quantum memories.