Do you want to publish a course? Click here

Intersite 4p-3d hybridization in cobalt oxides: a resonant x-ray emission spectroscopy study

110   0   0.0 ( 0 )
 Added by Gy\\\"orgy Vank\\'o
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on strong dipole transitions to 3d orbitals of neighboring Co atoms in the Co 1s x-ray absorption pre-edge. They are revealed by applying high-resolution resonant x-ray emission spectroscopy (RXES) to compounds containing CoO6 clusters. When contrasted to quadrupole local 1s3d excitations, these non-local 1s3d transitions are identified by their energy dispersion and angular dependence, their sensitivity to second-shell effects (i.e. the connection mode of the CoO6 octahedra and the bond lengths), and an upwards energy shift of 2.5 eV due to the poorer screening of the core hole. The experiment reveals that the intensity of the non-local transitions gauges the oxygen-mediated 4p-O-3d intersite hybridization. We propose a revised interpretation of the pre-edges of transition metal compounds. Detailed analysis of these new features in the pre-edge offers a unique insight in the oxygen mediated metal-metal interactions in transition metal-based systems, which is a crucial aspect in orbital ordering and related electronic and magnetic properties. In addition, the exceptional resolving power of the present 1s2p RXES experiment allows us to demonstrate the coherent second-order nature of the underlying scattering process.



rate research

Read More

We report a theoretical study on resonant x-ray emission spectra (RXES) in the whole energy region of the Mn $L_{2,3}$ white lines for three prototypical Mn/Ag(001) systems: (i) a Mn impurity in Ag, (ii) an adsorbed Mn monolayer on Ag, and (iii) a thick Mn film. The calculated RXES spectra depend strongly on the excitation energy. At $L_3$ excitation, the spectra of all three systems are dominated by the elastic peak. For excitation energies around $L_2$, and between $L_3$ and $L_2$, however, most of the spectral weight comes from inelastic x-ray scattering. The line shape of these inelastic ``satellite structures changes considerably between the three considered Mn/Ag systems, a fact that may be attributed to changes in the bonding nature of the Mn-$d$ orbitals. The system-dependence of the RXES spectrum is thus found to be much stronger than that of the corresponding absorption spectrum. Our results suggest that RXES in the Mn $L_{2,3}$ region may be used as a sensitive probe of the local environment of Mn atoms.
We demonstrate the utility of point group representation theory for symmetry analysis in resonant inelastic x-ray scattering. From its polarization-dependence, we show that a 5 eV inelastic feature in Sr2CuO2Cl2 has pure B1g symmetry and assign it to a transition in the cell-perturbation calculations of Simon, et. al. [Phys. Rev. B., 54, R3780 (1996)]. We discuss how Raman selection rules are broken at nonzero momentum transfer and how this can also act as a probe of wave function symmetry.
We investigate both thermoelectric and thermodynamic properties of the misfit cobalt oxide [Bi$_{1.7}$Co$_{0.3}$Ca$_{2}$O$_{4}$]$^{RS}_{0.6}$CoO$_{2}$. A large negative magnetothermopower is found to scale with both magnetic field and temperature revealing a significant spin entropy contribution to thermoelectric properties giving rise to a constant S$_0approx$ 60 $mu$V K$^{-1}$ equal to the high temperature asymptotic value of the spin 1/2 entropy. Low temperature specific heat measurements allow us to determine an enhanced electronic part with $gammaapprox$ 50 mJ (mol K$^{2}$)$^{-1}$ attesting of strong correlations. Thereby, a critical comparison between [Bi$_{1.7}$Co$_{0.3}$Ca$_{2}$O$_{4}$]$^{RS}_{0.6}$CoO$_{2}$, other cobaltites as well as other materials reveals a universal behavior of the thermopower low temperature slope as a function of $gamma$ testifying thus a purely electronic origin. This potentially generic scaling behavior suggests here that the high room temperature value of the thermopower in misfit cobalt oxides results from the addition of a spin entropy contribution to an enlarged electronic one.
We report empirical comparisons of Cu K-edge indirect resonant inelastic x-ray scattering (RIXS) spectra, taken at the Brillouin zone center, with optical dielectric loss functions measured in a number of copper oxides. The RIXS data are obtained for Bi$_2$CuO$_4$, CuGeO$_3$, Sr$_2$Cu$_3$O$_4$Cl$_2$, La$_2$CuO$_4$, and Sr$_2$CuO$_2$Cl$_2$, and analyzed by considering both incident and scattered photon resonances. An incident-energy-independent response function is then extracted. The dielectric loss functions, measured with spectroscopic ellipsometry, agree well with this RIXS response, especially in Bi$_2$CuO$_4$ and CuGeO$_3$.
An alternative measure of x-ray absorption spectroscopy (XAS) called inverse partial fluorescence yield (IPFY) has recently been developed that is both bulk sensitive and free of saturation effects. Here we show that the angle dependence of IPFY can provide a measure directly proportional to the total x-ray absorption coefficient, $mu(E)$. In contrast, fluorescence yield (FY) and electron yield (EY) spectra are offset and/or distorted from $mu(E)$ by an unknown and difficult to measure amount. Moreover, our measurement can determine $mu(E)$ in absolute units with no free parameters by scaling to $mu(E)$ at the non-resonant emission energy. We demonstrate this technique with measurements on NiO and NdGaO$_3$. Determining $mu(E)$ across edge-steps enables the use of XAS as a non-destructive measure of material composition. In NdGaO$_3$, we also demonstrate the utility of IPFY for insulating samples, where neither EY or FY provide reliable spectra due to sample charging and self-absorption effects, respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا