Do you want to publish a course? Click here

Gauge-invariant description of some (2+1)-dimensional integrable nonlinear evolution equations

186   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

New manifestly gauge-invariant forms of two-dimensional generalized dispersive long-wave and Nizhnik-Veselov-Novikov systems of integrable nonlinear equations are presented. It is shown how in different gauges from such forms famous two-dimensional generalization of dispersive long-wave system of equations, Nizhnik-Veselov-Novikov and modified Nizhnik-Veselov-Novikov equations and other known and new integrable nonlinear equations arise. Miura-type transformations between nonlinear equations in different gauges are considered.



rate research

Read More

We obtain new gauge-invariant forms of two-dimensional integrable systems of nonlinear equations: the Sawada-Kotera and Kaup-Kuperschmidt system, the generalized system of dispersive long waves, and the Nizhnik-Veselov-Novikov system. We show how these forms imply both new and well-known two-dimensional integrable nonlinear equations: the Sawada-Kotera equation, Kaup-Kuperschmidt equation, dispersive long-wave system, Nizhnik-Veselov-Novikov equation, and modified Nizhnik-Veselov-Novikov equation. We consider Miura-type transformations between nonlinear equations in different gauges.
We classify integrable Hamiltonian equations in 3D with the Hamiltonian operator d/dx, where the Hamiltonian density h(u, w) is a function of two variables: dependent variable u and the non-locality w such that w_x=u_y. Based on the method of hydrodynamic reductions, the integrability conditions are derived (in the form of an involutive PDE system for the Hamiltonian density h). We show that the generic integrable density is expressed in terms of the Weierstrass elliptic functions. Dispersionless Lax pairs, commuting flows and dispersive deformations of the resulting equations are also discussed.
212 - Takayuki Tsuchida 2011
We propose a new type of reduction for integrable systems of coupled matrix PDEs; this reduction equates one matrix variable with the transposition of another multiplied by an antisymmetric constant matrix. Via this reduction, we obtain a new integrable system of coupled derivative mKdV equations and a new integrable variant of the massive Thirring model, in addition to the already known systems. We also discuss integrable semi-discretizations of the obtained systems and present new soliton solutions to both continuous and semi-discrete systems. As a by-product, a new integrable semi-discretization of the Manakov model (self-focusing vector NLS equation) is obtained.
In this letter, we construct new meshy soliton structures by using two concrete (2+1)-dimensional integrable systems. The explicit expressions based on corresponding Cole-Hopf type transformations are obtained. Constraint equation ft+sum_{j=1}^{N} h_j(y)f_{jx} = 0 shows that these meshy soliton structures can be linear or parabolic. Interaction between meshy soliton structure and Lump structure are also revealed.
Recently, an integrable system of coupled (2+1)-dimensional nonlinear Schrodinger (NLS) equations was introduced by Fokas (eq. (18) in Nonlinearity 29}, 319324 (2016)). Following this pattern, two integrable equations [eqs.2 and 3] with specific parity-time symmetry are introduced here, under different reduction conditions. For eq. 2, two kinds of periodic solutions are obtained analytically by means of the Hirotas bilinear method. In the long-wave limit, the two periodic solutions go over into rogue waves (RWs) and semi-rational solutions, respectively. The RWs have a line shape, while the semi-rational states represent RWs built on top of the background of periodic line waves. Similarly, semi-rational solutions consisting of a line RW and line breather are derived. For eq. 3, three kinds of analytical solutions,textit{viz}., breathers, lumps and semi-rational solutions, representing lumps, periodic line waves and breathers are obtained, using the Hirota method. Their dynamics are analyzed and demonstrated by means of three-dimensional plots. It is also worthy to note that eq. 2 can reduce to a (1+1)-dimensional textquotedblleft reverse-space nonlocal NLS equation by means of a certain transformation, Lastly, main differences between solutions of eqs.2 and 3 are summarized.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا