We found that multiple circular walls (MCW) can be generated on a thin film of a nematic liquid crystal through a spiral scanning of a focused IR laser. The ratios between radii of adjacent rings of MCW were almost constant. These constant ratios can be explained theoretically by minimization of the Frank elastic free energy of nematic medium. The director field on a MCW exhibits chiral symmetry-breaking although the elastic free energies of both chiral MCWs are degenerated, i.e., the director on a MCW can rotate clockwise or counterclockwise along the radial direction.
We consider a mathematical model that describes the flow of a Nematic Liquid Crystal (NLC) film placed on a flat substrate, across which a spatially-varying electric potential is applied. Due to their polar nature, NLC molecules interact with the (nonuniform) electric field generated, leading to instability of a flat film. Implementation of the long wave scaling leads to a partial differential equation that predicts the subsequent time evolution of the thin film. This equation is coupled to a boundary value problem that describes the interaction between the local molecular orientation of the NLC (the director field) and the electric potential. We investigate numerically the behavior of an initially flat film for a range of film heights and surface anchoring conditions.
We study the optical properties of gold nanoparticles coated with a nematic liquid crystal whose director field is distributed around the nanoparticle according to the anchoring conditions at the surface of the nanoparticle. The distribution of the nematic liquid crystal is obtained by minimization of the corresponding Frank free-energy functional whilst the optical response is calculated by the discrete-dipole approximation. We find, in particular, that the anisotropy of the nematic liquid-crystal coating does not affect much the (isotropic) optical response of the nanoparticle. However, for strong anchoring of the nematic liquid-crystal molecules on the surface of nanoparticle, the inhomogeneity of the coating which is manifested by a ring-type singularity (disclination or Saturn ring), produces an enhancement of the extinction cross spectrum over the entire visible spectrum.
Instabilities in thin elastic sheets, such as wrinkles, are of broad interest both from a fundamental viewpoint and also because of their potential for engineering applications. Nematic liquid crystal elastomers offer a new form of control of these instabilities through direct coupling between microscopic degrees of freedom, resulting from orientational ordering of rod-like molecules, and macroscopic strain. By a standard method of dimensional reduction, we construct a plate theory for thin sheets of nematic elastomer. We then apply this theory to the study of the formation of wrinkles due to compression of a thin sheet of nematic liquid crystal elastomer atop an elastic or fluid substrate. We find the scaling of the wrinkle wavelength in terms of material parameters and the applied compression. The wavelength of the wrinkles is found to be non-monotonic in the compressive strain owing to the presence of the nematic. Finally, due to soft modes, the critical stress for the appearance of wrinkles can be much higher than in an isotropic elastomer and depends nontrivially on the manner in which the elastomer was prepared.
We create controllable active particles in the form of metal-dielectric Janus colloids which acquire motility through a nematic liquid crystal film by transducing the energy of an imposed perpendicular AC electric field. We achieve complete command over trajectories by varying field amplitude and frequency, piloting the colloids at will in the plane spanned by the axes of the particle and the nematic. The underlying mechanism exploits the sensitivity of electro-osmotic flow to the asymmetries of the particle surface and the liquid-crystal defect structure. We present a calculation of the dipolar force density produced by the interplay of the electric field with director anchoring and the contrasting electrostatic boundary conditions on the two hemispheres, that accounts for the dielectric-forward (metal-forward) motion of the colloids due to induced puller (pusher) force dipoles. These findings open unexplored directions for the use of colloids and liquid crystals in controlled transport, assembly and collective dynamics.
The stability of the equilibrium configurations of a nematic liquid crystal confined between two coaxial cylinders is analysed when a radial electric field is applied and the flexoelectric effect is taken into account. The threshold for perturbations depending only on the radius r in the cylindrical coordinate system and strong boundary conditions is studied. A new type of orientational transition caused by pure flexoelectric effect is found.
M. Kojima
,J. Yamamoto
,K. Sadakane
.
(2008)
.
"Generation of Multiple Circular Walls on a Thin Film of Nematic Liquid Crystal by Laser Scanning"
.
Masahiro Kojima
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا