Do you want to publish a course? Click here

Calculations for Magnetism in SQUIDs at Millikelvin Temperatures

128   0   0.0 ( 0 )
 Added by Robert McDermott
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Here we present details of a calculation that allows us to extract a surface density of unpaired spins from flux vs. temperature experiments performed on field-cooled dc Superconducting QUantum Interference Devices (dc SQUIDs).



rate research

Read More

We have characterized the temperature dependence of the flux threading dc SQUIDs cooled to millikelvin temperatures. The flux increases as 1/T as temperature is lowered; moreover, the flux change is proportional to the density of trapped vortices. The data is compatible with the thermal polarization of surface spins in the trapped fields of the vortices. In the absence of trapped flux, we observe evidence of spin-glass freezing at low temperature. These results suggest an explanation for the universal 1/f flux noise in SQUIDs and superconducting qubits.
We study the loss rate for a set of lambda/2 coplanar waveguide resonators at millikelvin temperatures (20 mK - 900mK) and different applied powers (3E-19 W - 1E-12 W). The loss rate becomes power independent below a critical power. For a fixed power, the loss rate increases significantly with decreasing temperature. We show that this behavior can be caused by two-level systems in the surrounding dielectric materials. Interestingly, the influence of the two-level systems is of the same order of magnitude for the different material combinations. That leads to the assumption that the nature of these two-level systems is material independent.
We present measurements of 1/f frequency noise in both linear and Josephson-junction-embedded superconducting aluminum resonators in the low power, low temperature regime - typical operating conditions for superconducting qubits. The addition of the Josephson junction does not result in additional frequency noise, thereby placing an upper limit for fractional critical current fluctuations of $10^{-8}$ (Hz$^{-1/2}$) at 1 Hz for sub-micron, shadow evaporated junctions. These values imply a minimum dephasing time for a superconducting qubit due to critical current noise of 40 -- 1400 $mu$s depending on qubit architecture. Occasionally, at temperatures above 50 mK, we observe the activation of individual fluctuators which increase the level of noise significantly and exhibit Lorentzian spectra.
Unwanted fluctuations over time, in short, noise, are detrimental to device performance, especially for quantum coherent circuits. Recent efforts have demonstrated routes to utilizing magnon systems for quantum technologies, which are based on interfacing single magnons to superconducting qubits. However, the coupling of several components often introduces additional noise to the system, degrading its coherence. Researching the temporal behavior can help to identify the underlying noise sources, which is a vital step in increasing coherence times and the hybrid device performance. Yet, the frequency noise of the ferromagnetic resonance (FMR) has so far been unexplored. Here, we investigate such FMR frequency fluctuations of a YIG sphere down to mK-temperatures, and find them independent of temperature and drive power. This suggests that the measured frequency noise in YIG is dominated by so far undetermined noise sources, which properties are not consistent with the conventional model of two-level systems, despite their effect on the sample linewidth. Moreover, the functional form of the FMR frequency noise power spectral density (PSD) cannot be described by a simple power law. By employing time-series analysis, we find a closed function for the PSD that fits our observations. Our results underline the necessity of coherence improvements to magnon systems for useful applications in quantum magnonics.
We investigate the basic charge and heat transport properties of charge neutral epigraphene at sub-kelvin temperatures, demonstrating nearly logarithmic dependence of electrical conductivity over more than two decades in temperature. Using graphenes sheet conductance as in-situ thermometer, we present a measurement of electron-phonon heat transport at mK temperatures and show that it obeys the $T^4$ dependence characteristic for clean two-dimensional conductor. Based on our measurement we predict the noise-equivalent power of $sim 10^{-22}~{rm W}/sqrt{{rm Hz}}$ of epigraphene bolometer at the low end of achievable temperatures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا