Do you want to publish a course? Click here

Fully-connected network of superconducting qubits in a cavity

447   0   0.0 ( 0 )
 Added by Dimitris Tsomokos
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

A fully-connected qubit network is considered, where every qubit interacts with every other one. When the interactions between the qubits are homogeneous, the system is a special case of the finite Lipkin-Meshkov-Glick model. We propose a natural implementation of this model using superconducting qubits in state-of-the-art circuit QED. The ground state, the low-lying energy spectrum and the dynamical evolution are investigated. We find that, under realistic conditions, highly entangled states of Greenberger-Horne-Zeilinger and W types can be generated. We also comment on the influence of disorder on the system and discuss the possibility of simulating complex quantum systems, such as Sherrington-Kirkpatrick spin glasses, with superconducting qubit networks.



rate research

Read More

Quantum communication relies on the efficient generation of entanglement between remote quantum nodes, due to entanglements key role in achieving and verifying secure communications. Remote entanglement has been realized using a number of different probabilistic schemes, but deterministic remote entanglement has only recently been demonstrated, using a variety of superconducting circuit approaches. However, the deterministic violation of a Bell inequality, a strong measure of quantum correlation, has not to date been demonstrated in a superconducting quantum communication architecture, in part because achieving sufficiently strong correlation requires fast and accurate control of the emission and capture of the entangling photons. Here we present a simple and robust architecture for achieving this benchmark result in a superconducting system.
We report a system where fixed interactions between non-computational levels make bright the otherwise forbidden two-photon 00 --> 11 transition. The system is formed by hand selection and assembly of two discrete component transmon-style superconducting qubits inside a rectangular microwave cavity. The application of a monochromatic drive tuned to this transition induces two-photon Rabi-like oscillations between the ground and doubly-excited states via the Bell basis. The system therefore allows all-microwave two-qubit universal control with the same techniques and hardware required for single qubit control. We report Ramsey-like and spin echo sequences with the generated Bell states, and measure a two-qubit gate fidelity of 90% (unconstrained) and 86% (maximum likelihood estimator).
Superconducting circuits are promising candidates for constructing quantum bits (qubits) in a quantum computer; single-qubit operations are now routine, and several examples of two qubit interactions and gates having been demonstrated. These experiments show that two nearby qubits can be readily coupled with local interactions. Performing gates between an arbitrary pair of distant qubits is highly desirable for any quantum computer architecture, but has not yet been demonstrated. An efficient way to achieve this goal is to couple the qubits to a quantum bus, which distributes quantum information among the qubits. Here we show the implementation of such a quantum bus, using microwave photons confined in a transmission line cavity, to couple two superconducting qubits on opposite sides of a chip. The interaction is mediated by the exchange of virtual rather than real photons, avoiding cavity induced loss. Using fast control of the qubits to switch the coupling effectively on and off, we demonstrate coherent transfer of quantum states between the qubits. The cavity is also used to perform multiplexed control and measurement of the qubit states. This approach can be expanded to more than two qubits, and is an attractive architecture for quantum information processing on a chip.
62 - Xu Liu , Rong Xue , Heqing Wang 2020
Quantum communication is developed owing to the theoretically proven security of quantum mechanics, which may become the main technique in future information security. However, most studies and implementations are limited to two or several parties. Herein, we propose a fully connected quantum communication network without a trusted node for a large number of users. Using flexible wavelength demultiplex/multiplex and space multiplex technologies, 40 users are fully connected simultaneously without a trusted node by a broadband energy-time entangled photon pair source. This network architecture may be widely deployed in real scenarios such as companies, schools, and communities owing to its simplicity, scalability, and high efficiency.
We investigate the performance of superconducting flux qubits for the adiabatic quantum simulation of long distance entanglement (LDE), namely a finite ground-state entanglement between the end spins of a quantum spin chain with open boundary conditions. As such, LDE can be considered an elementary precursor of edge modes and topological order. We discuss two possible implementations which simulate open chains with uniform bulk and weak end bonds, either with Ising or with XX nearest-neighbor interactions. In both cases we discuss a suitable protocol for the adiabatic preparation of the ground state in the physical regimes featuring LDE. In the first case the adiabatic manipulation and the Ising interactions are realized using dc currents, while in the second case microwaves fields are used to control the smoothness of the transformation and to realize the effective XX interactions. We demonstrate the adiabatic preparation of the end-to-end entanglement in chains of four qubits with realistic parameters and on a relatively fast time scale.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا