Do you want to publish a course? Click here

Spin-orbit interaction in Au structures of various dimensionalities

92   0   0.0 ( 0 )
 Added by Xiaoping Yang
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Variation of the geometrical and electronic properties of the gold materials in different dimensions has been investigated by $ab$ $initio$ method, taking into account the spin-orbit (SO) interaction. It is found that SO effects in different dimensional Au materials depend greatly on fundamental symmetry and dimensionality. For single walled gold nanotubes (SWGNTs), SO interaction decreases significantly the conducting channel number of achiral SWGNT (4, 0), and leads to spin splitting at Fermi level of chiral SWGNT, indicating that quasi-1D SWGNT can be a good candidate for the spin-electron devices. Furthermore, our results suggest that cage cluster might be synthesizable experimentally by taking gold tube structure as parent material.



rate research

Read More

In contrast to conventional assumptions, we show that the Dzyaloshinskii-Moriya interaction can be of non-relativistic origin, in particular in materials with a non-collinear magnetic configuration, where non-relativistic contributions can dominate over spin-orbit effects. The weak antiferromagnetic phase of Mn$_{3}$Sn is used to illustrate these findings. Using electronic structure theory as a conceptual platform, all relevant exchange interactions are derived for a general, non-collinear magnetic state. It is demonstrated that non-collinearity influences all three types of exchange interaction and that physically distinct mechanisms, which connect to electron- and spin-density and currents, may be used as a general way to analyze and understand magnetic interactions of the solid state.
115 - Akiyori Yamamoto 2015
A quantitative investigation of spin-pumping-induced spin-transport in n-GaAs was conducted at room temperature (RT). GaAs has a non-negligible spin orbit interaction, so that electromotive force due to the inverse spin Hall effect (ISHE) of GaAs contributed to the electromotive force detected with a platinum (Pt) spin detector. The electromotive force detected by the Pt spin detector had opposite polarity to that measured with a Ni80Fe20/GaAs bilayer due to the opposite direction of spin current flow, which demonstrates successful spin transport in the n-GaAs channel. A two-dimensional spin-diffusion model that considers the ISHE in the n-GaAs channel reveals an accurate spin diffusion length of t_s = 1.09 um in n-GaAs (NSi = 4x10^16 cm-3) at RT, which is approximately half that estimated by the conventional model.
170 - Lijun Zhu , Lujun Zhu , Xin Ma 2020
The quantitative roles of the interfacial spin-orbit coupling (SOC) in Dzyaloshinskii-Moriya interaction (DMI) and dampinglike spin-orbit torque ({tau}DL) have remained unsettled after a decade of intensive study. Here, we report a conclusive experiment evidence that, because of the critical role of the interfacial orbital hybridization, the interfacial DMI is not necessarily a linear function of the interfacial SOC, e.g. at Au1-xPtx/Co interfaces where the interfacial SOC can be tuned significantly via strongly composition (x)-dependent spin-orbit proximity effect without varying the bulk SOC and the electronegativity of the Au1-xPtx layer. We also find that {tau}DL in the Au1-xPtx/Co bilayers varies distinctly from the interfacial SOC as a function of x, indicating no important {tau}DL contribution from the interfacial Rashba-Edelstein effect.
Low-dimensional materials have attracted significant attentions over the past decade. To discover new low-dimensional materials, high-throughout screening methods have been applied in different materials databases. For this purpose, the reliability of dimensionality identification is therefore highly important. In this work, we find that the existence of self-penetrating nets may lead to incorrect results by previous methods. In stead of this, we use the quotient graph to analysis the topologies of structures and compute their dimensionalities. Based on the quotient graph, we can calculate not only the dimensionality but also the multiplicity of self-penetrating structures. As a demonstration, we screened the Crystallography Open Database using our method and found hundreds of structures with different dimensionalities and high multiplicities up to eleven.
We study the influence of strong spin-orbit interaction on the formation of flat bands in relaxed twisted bilayer WSe$_2$. Flat bands, well separated in energy, emerge at the band edges for twist angles ($theta$) close to 0$^o$ and 60$^o$. For $theta$ close to 0$^o$, the interlayer hybridization together with a moir{e} potential determines the electronic structure. The bands near the valence band edge have non-trivial topology, with Chern numbers equal to +1 or $-$1. We propose that this can be probed experimentally for twist angles less than a critical angle of 3.5$^o$. For $theta$ near 60$^o$, the flattening of the bands arising from the K point of the unit cell Brillouin zone is a result of atomic rearrangements in the individual layers. Our findings on the flat bands and the localization of their wavefunctions for both ranges of $theta$ match well with recent experimental observations [1,2].
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا