Do you want to publish a course? Click here

Testing the Hilbert space dimension

149   0   0.0 ( 0 )
 Added by Nicolas Brunner
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Given a set of correlations originating from measurements on a quantum state of unknown Hilbert space dimension, what is the minimal dimension d necessary to describes such correlations? We introduce the concept of dimension witness to put lower bounds on d. This work represents a first step in a broader research program aiming to characterize Hilbert space dimension in various contexts related to fundamental questions and Quantum Information applications.



rate research

Read More

Dual-unitary quantum circuits can be used to construct 1+1 dimensional lattice models for which dynamical correlations of local observables can be explicitly calculated. We show how to analytically construct classes of dual-unitary circuits with any desired level of (non-)ergodicity for any dimension of the local Hilbert space, and present analytical results for thermalization to an infinite-temperature Gibbs state (ergodic) and a generalized Gibbs ensemble (non-ergodic). It is shown how a tunable ergodicity-inducing perturbation can be added to a non-ergodic circuit without breaking dual-unitarity, leading to the appearance of prethermalization plateaux for local observables.
336 - Robert B. Griffiths 2013
A resolution of the quantum measurement problem(s) using the consistent histories interpretation yields in a rather natural way a restriction on what an observer can know about a quantum system, one that is also consistent with some results in quantum information theory. This analysis provides a quantum mechanical understanding of some recent work that shows that certain kinds of quantum behavior are exhibited by a fully classical model if by hypothesis an observers knowledge of its state is appropriately limited.
81 - Sean M. Carroll 2021
I defend the extremist position that the fundamental ontology of the world consists of a vector in Hilbert space evolving according to the Schrodinger equation. The laws of physics are determined solely by the energy eigenspectrum of the Hamiltonian. The structure of our observed world, including space and fields living within it, should arise as a higher-level emergent description. I sketch how this might come about, although much work remains to be done.
In quantum mechanics, physical states are represented by rays in Hilbert space $mathscr H$, which is a vector space imbued by an inner product $langle,|,rangle$, whose physical meaning arises as the overlap $langlephi|psirangle$ for $|psirangle$ a pure state (description of preparation) and $langlephi|$ a projective measurement. However, current quantum theory does not formally address the consequences of a changing inner product during the interval between preparation and measurement. We establish a theoretical framework for such a changing inner product, which we show is consistent with standard quantum mechanics. Furthermore, we show that this change is described by a quantum channel, which is tomographically observable, and we elucidate how our result is strongly related to the exploding topic of PT-symmetric quantum mechanics. We explain how to realize experimentally a changing inner product for a qubit in terms of a qutrit protocol with a unitary channel.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا