Do you want to publish a course? Click here

Factorization of the Indefinite Convection-Diffusion Operator

140   0   0.0 ( 0 )
 Added by Marina Chugunova
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We prove that some non-self-adjoint differential operator admits factorization and apply this new representation of the operator to construct explicitly its domain. We also show that this operator is J-self-adjoint in some Krein space.



rate research

Read More

129 - John Weir 2007
We confirm rigorously the conjecture, based on numerical and asymptotic evidence, that all the eigenvalues of a certain non-self-adjoint operator are real.
208 - Said Benachour 2007
The large time behavior of zero mass solutions to the Cauchy problem for a convection-diffusion equation. We provide conditions on the size and shape of the initial datum such that the large time asymptotics of solutions is given either by the derivative of the Guass-Weierstrass kernel or by a self-similar solution or by a hyperbolic N-wave
We consider singularly perturbed convection-diffusion equations on one-dimensional networks (metric graphs) as well as the transport problems arising in the vanishing diffusion limit. Suitable coupling condition at inner vertices are derived that guarantee conservation of mass as well as dissipation of a mathematical energy which allows us to prove stability and well-posedness. For single intervals and appropriately specified initial conditions, it is well-known that the solutions of the convection-diffusion problem converge to that of the transport problem with order $O(sqrt{epsilon})$ in the $L^infty(L^2)$-norm with diffusion $epsilon to 0$. In this paper, we prove a corresponding result for problems on one-dimensional networks. The main difficulty in the analysis is that the number and type of coupling conditions changes in the singular limit which gives rise to additional boundary layers at the interior vertices of the network. Since the values of the solution at these network junctions are not known a-priori, the asymptotic analysis requires a delicate choice of boundary layer functions that allows to handle these interior layers.
We present a novel recursive algorithm for reducing a symmetric matrix to a triangular factorization which reveals the rank profile matrix. That is, the algorithm computes a factorization $mathbf{P}^Tmathbf{A}mathbf{P} = mathbf{L}mathbf{D}mathbf{L}^T$ where $mathbf{P}$ is a permutation matrix, $mathbf{L}$ is lower triangular with a unit diagonal and $mathbf{D}$ is symmetric block diagonal with $1{times}1$ and $2{times}2$ antidiagonal blocks. The novel algorithm requires $O(n^2r^{omega-2})$ arithmetic operations. Furthermore, experimental results demonstrate that our algorithm can even be slightly more than twice as fast as the state of the art unsymmetric Gaussian elimination in most cases, that is it achieves approximately the same computational speed. By adapting the pivoting strategy developed in the unsymmetric case, we show how to recover the rank profile matrix from the permutation matrix and the support of the block-diagonal matrix. There is an obstruction in characteristic $2$ for revealing the rank profile matrix which requires to relax the shape of the block diagonal by allowing the 2-dimensional blocks to have a non-zero bottom-right coefficient. This relaxed decomposition can then be transformed into a standard $mathbf{P}mathbf{L}mathbf{D}mathbf{L}^Tmathbf{P}^T$ decomposition at a negligible cost.
We introduce non-trivial contributions to diffusion constant in generic many-body systems arising from quadratic fluctuations of ballistically propagating, i.e. convective, modes. Our result is obtained by expanding the current operator in the vicinity of equilibrium states in terms of powers of local and quasi-local conserved quantities. We show that only the second-order terms in this expansion carry a finite contribution to diffusive spreading. Our formalism implies that whenever there are at least two coupled modes with degenerate group velocities, the system behaves super-diffusively, in accordance with the non-linear fluctuating hydrodynamics theory. Finally, we show that our expression saturates the exact diffusion constants in quantum and classical interacting integrable systems, providing a general framework to derive these expressions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا