No Arabic abstract
We consider singularly perturbed convection-diffusion equations on one-dimensional networks (metric graphs) as well as the transport problems arising in the vanishing diffusion limit. Suitable coupling condition at inner vertices are derived that guarantee conservation of mass as well as dissipation of a mathematical energy which allows us to prove stability and well-posedness. For single intervals and appropriately specified initial conditions, it is well-known that the solutions of the convection-diffusion problem converge to that of the transport problem with order $O(sqrt{epsilon})$ in the $L^infty(L^2)$-norm with diffusion $epsilon to 0$. In this paper, we prove a corresponding result for problems on one-dimensional networks. The main difficulty in the analysis is that the number and type of coupling conditions changes in the singular limit which gives rise to additional boundary layers at the interior vertices of the network. Since the values of the solution at these network junctions are not known a-priori, the asymptotic analysis requires a delicate choice of boundary layer functions that allows to handle these interior layers.
Given a symmetric Riemannian manifold (M, g), we show some results of genericity for non degenerate sign changing solutions of singularly perturbed nonlinear elliptic problems with respect to the parameters: the positive number {epsilon} and the symmetric metric g. Using these results we obtain a lower bound on the number of non degenerate solutions which change sign exactly once.
We explore the relation between fast waves, damping and imposed noise for different scalings by considering the singularly perturbed stochastic nonlinear wave equations u u_{tt}+u_t=D u+f(u)+ u^alphadot{W} on a bounded spatial domain. An asymptotic approximation to the stochastic wave equation is constructed by a special transformation and splitting of $ u u_{t}$. This splitting gives a clear description of the structure of $u$. The approximating model, for small $ u>0$,, is a stochastic nonlinear heat equation for exponent $0leqalpha<1$,, and is a deterministic nonlinear wave equation for exponent $alpha>1$,.
We consider semilinear stochastic evolution equations on Hilbert spaces with multiplicative Wiener noise and linear drift term of the type $A + varepsilon G$, with $A$ and $G$ maximal monotone operators and $varepsilon$ a small parameter, and study the differentiability of mild solutions with respect to $varepsilon$. The operator $G$ can be a singular perturbation of $A$, in the sense that its domain can be strictly contained in the domain of $A$.
We consider a family of linear singularly perturbed PDE relying on a complex perturbation parameter $epsilon$. As in a former study of the authors (A. Lastra, S. Malek, Parametric Gevrey asymptotics for some nonlinear initial value Cauchy problems, J. Differential Equations 259 (2015), no. 10, 5220--5270), our problem possesses an irregular singularity in time located at the origin but, in the present work, it entangles also differential operators of Fuchsian type acting on the time variable. As a new feature, a set of sectorial holomorphic solutions are built up through iterated Laplace transforms and Fourier inverse integrals following a classical multisummability procedure introduced by W. Balser. This construction has a direct issue on the Gevrey bounds of their asymptotic expansions w.r.t $epsilon$ which are shown to bank on the order of the leading term which combines both irregular and Fuchsian types operators.
An averaging method is applied to derive effective approximation to the following singularly perturbed nonlinear stochastic damped wave equation u u_{tt}+u_t=D u+f(u)+ u^alphadot{W} on an open bounded domain $DsubsetR^n$,, $1leq nleq 3$,. Here $ u>0$ is a small parameter characterising the singular perturbation, and $ u^alpha$,, $0leq alphaleq 1/2$,, parametrises the strength of the noise. Some scaling transformations and the martingale representation theorem yield the following effective approximation for small $ u$, u_t=D u+f(u)+ u^alphadot{W} to an error of $ord{ u^alpha}$,.