No Arabic abstract
Three dimensional Einstein gravity with negative cosmological constant -1/ell^2 deformed by a gravitational Chern-Simons action with coefficient 1/mu is studied in an asymptotically AdS_3 spacetime. It is argued to violate unitary or positivity for generic mu due to negative-energy massive gravitons. However at the critical value muell=1, the massive gravitons disappear and BTZ black holes all have mass and angular momentum related by ell M=J. The corresponding chiral quantum theory of gravity is conjectured to exist and be dual to a purely right-moving boundary CFT with central charges (c_L,c_R)=(0,3ell /G).
In three dimensions, there exist modifications of Einsteins gravity akin to the topologically massive gravity that describe massive gravitons about maximally symmetric backgrounds. These theories are built on the three-dimensional version of the Bach tensor (a curl of the Cotton-York tensor) and its higher derivative generalizations; and they are on-shell consistent without a Lagrangian description based on the metric tensor alone. We give a generic construction of these models, find the spectra and compute the conserved quantities for the Banados-Teitelboim-Zanelli black hole.
The equivalence between Chern-Simons and Einstein-Hilbert actions in three dimensions established by A.~Achucarro and P.~K.~Townsend (1986) and E.~Witten (1988) is generalized to the off-shell case. The technique is also generalized to the Yang-Mills action in four dimensions displaying de Sitter gauge symmetry. It is shown that, in both cases, we can directly identify a gravity action while the gauge symmetry can generate spacetime local isometries as well as diffeomorphisms. The price we pay for working in an off-shell scenario is that specific geometric constraints are needed. These constraints can be identified with foliations of spacetime. The special case of spacelike leafs evolving in time is studied. Finally, the whole set up is analyzed under fiber bundle theory. In this analysis we show that a traditional gauge theory, where the gauge field does not influence in spacetime dynamics, can be (for specific cases) consistently mapped into a gravity theory in the first order formalism.
We formulate four-dimensional conformal gravity with (Anti-)de Sitter boundary conditions that are weaker than Starobinsky boundary conditions, allowing for an asymptotically subleading Rindler term concurrent with a recent model for gravity at large distances. We prove the consistency of the variational principle and derive the holographic response functions. One of them is the conformal gravity version of the Brown-York stress tensor, the other is a `partially massless response. The on-shell action and response functions are finite and do not require holographic renormalization. Finally, we discuss phenomenologically interesting examples, including the most general spherically symmetric solutions and rotating black hole solutions with partially massless hair.
We construct superconformal gauged sigma models with extended rigid supersymmetry in three dimensions. Those with N>4 have necessarily flat targets, but the models with N leq 4 admit non-flat targets, which are cones with appropriate Sasakian base manifolds. Superconformal symmetry also requires that the three dimensional spacetimes admit conformal Killing spinors which we examine in detail. We present explicit results for the gauged superconformal theories for N=1,2. In particular, we gauge a suitable subgroup of the isometry group of the cone in a superconformal way. We finally show how these sigma models can be obtained from Poincare supergravity. This connection is shown to necessarily involve a subset of the auxiliary fields of supergravity for N geq 2.
We show that three-dimensional massive gravity admits Lifshitz metrics with generic values of the dynamical exponent z as exact solutions. At the point z=3, exact black hole solutions which are asymptotically Lifshitz arise. These spacetimes are three-dimensional analogues of those that were recently proposed as gravity duals for scale invariant fixed points.