Do you want to publish a course? Click here

Pure-state transformations and catalysis under operations that completely preserve positivity of partial transpose

333   0   0.0 ( 0 )
 Added by William Matthews
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Motivated by the desire to better understand the class of quantum operations on bipartite systems that preserve positivity of partial transpose (PPT operations) and its relation to the class LOCC (local operations and classical communication), we present some results on deterministic bipartite pure state transformations by PPT operations. Restricting our attention to the case where we start with a rank K maximally entangled state, we give a necessary condition for transforming it into a given pure state, which we show is also sufficient when K is two and the final state has Schmidt rank three. We show that it is sufficient for all K and all final states provided a conjecture about a certain family of semidefinite programs is true. We also demonstrate that the phenomenon of catalysis can occur under PPT operations and that, unlike LOCC catalysis, a maximally entangled state can be a catalyst. Finally, we give a necessary and sufficient condition for the possibility of transforming a rank K maximally entangled state to an arbitrary pure state by PPT operations assisted by some maximally entangled catalyst.



rate research

Read More

113 - Gokhan Torun , Ali Yildiz 2018
It is well known that the majorization condition is the necessary and sufficient condition for the deterministic transformations of both pure bipartite entangled states by local operations and coherent states under incoherent operations. In this paper, we present two explicit protocols for these transformations. We first present a permutation-based protocol which provides a method for the single-step transformation of $d$-dimensional coherent states. We also obtain generalized solutions of this protocol for some special cases of $d$-level systems. Then, we present an alternative protocol where we use $d$-level ($d$ $<$ $d$) subspace solutions of the permutation-based protocol to achieve the complete transformation as a sequence of coherent-state transformations. We show that these two protocols also provide solutions for deterministic transformations of pure bipartite entangled states.
We express the positive partial transpose (PPT) separability criterion for symmetric states of multi-qubit systems in terms of matrix inequalities based on the recently introduced tensor representation for spin states. We construct a matrix from the tensor representation of the state and show that it is similar to the partial transpose of the density matrix written in the computational basis. Furthermore, the positivity of this matrix is equivalent to the positivity of a correlation matrix constructed from tensor products of Pauli operators. This allows for a more transparent experimental interpretation of the PPT criteria for an arbitrary spin-j state. The unitary matrices connecting our matrix to the partial transpose of the state generalize the so-called magic basis that plays a central role in Wootters explicit formula for the concurrence of a 2-qubit system and the Bell bases used for the teleportation of a one or two-qubit state.
A basic diagnostic of entanglement in mixed quantum states is known as the partial transpose and the corresponding entanglement measure is called the logarithmic negativity. Despite the great success of logarithmic negativity in characterizing bosonic many-body systems, generalizing the partial transpose to fermionic systems remained a technical challenge until recently when a new definition that accounts for the Fermi statistics was put forward. In this paper, we propose a way to generalize the partial transpose to anyons with (non-Abelian) fractional statistics based on the apparent similarity between the partial transpose and the braiding operation. We then define the anyonic version of the logarithmic negativity and show that it satisfies the standard requirements such as monotonicity to be an entanglement measure. In particular, we elucidate the properties of the anyonic logarithmic negativity by computing it for a toy density matrix of a pair of anyons within various categories. We conjecture that the subspace of states with a vanishing logarithmic negativity is a set of measure zero in the entire space of anyonic states, in contrast with the ordinary qubit systems where this subspace occupies a finite volume. We prove this conjecture for multiplicity-free categories.
We work with reference to a well-known semiclassical model, in which quantum degrees of freedom interact with classical ones. We show that, in the classical limit, it is possible to represent classical results (e.g., classical chaos) by means a pure-state density matrix.
155 - Gokhan Torun , Ali Yildiz 2014
We propose an explicit protocol for the deterministic transformations of bipartite pure states in any dimension using deterministic transformations in lower dimensions. As an example, explicit solutions for the deterministic transformations of $3otimes 3$ pure states by a single measurement are obtained, and an explicit protocol for the deterministic transformations of $notimes n$ pure states by three-outcome measurements is presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا