No Arabic abstract
The scaling laws of the achievable communication rates and the corresponding upper bounds of distributed reception in the presence of an interfering signal are investigated. The scheme includes one transmitter communicating to a remote destination via two relays, which forward messages to the remote destination through reliable links with finite capacities. The relays receive the transmission along with some unknown interference. We focus on three common settings for distributed reception, wherein the scaling laws of the capacity (the pre-log as the power of the transmitter and the interference are taken to infinity) are completely characterized. It is shown in most cases that in order to overcome the interference, a definite amount of information about the interference needs to be forwarded along with the desired message, to the destination. It is exemplified in one scenario that the cut-set upper bound is strictly loose. The results are derived using the cut-set along with a new bounding technique, which relies on multi letter expressions. Furthermore, lattices are found to be a useful communication technique in this setting, and are used to characterize the scaling laws of achievable rates.
This paper considers a Gaussian multiple-access channel with random user activity where the total number of users $ell_n$ and the average number of active users $k_n$ may grow with the blocklength $n$. For this channel, it studies the maximum number of bits that can be transmitted reliably per unit-energy as a function of $ell_n$ and $k_n$. When all users are active with probability one, i.e., $ell_n = k_n$, it is demonstrated that if $k_n$ is of an order strictly below $n/log n$, then each user can achieve the single-user capacity per unit-energy $(log e)/N_0$ (where $N_0/ 2$ is the noise power) by using an orthogonal-access scheme. In contrast, if $k_n$ is of an order strictly above $n/log n$, then the capacity per unit-energy is zero. Consequently, there is a sharp transition between orders of growth where interference-free communication is feasible and orders of growth where reliable communication at a positive rate per unit-energy is infeasible. It is further demonstrated that orthogonal-access schemes in combination with orthogonal codebooks, which achieve the capacity per unit-energy when the number of users is bounded, can be strictly suboptimal. When the user activity is random, i.e., when $ell_n$ and $k_n$ are different, it is demonstrated that if $k_nlog ell_n$ is sublinear in $n$, then each user can achieve the single-user capacity per unit-energy $(log e)/N_0$. Conversely, if $k_nlog ell_n$ is superlinear in $n$, then the capacity per unit-energy is zero. Consequently, there is again a sharp transition between orders of growth where interference-free communication is feasible and orders of growth where reliable communication at a positive rate is infeasible that depends on the asymptotic behaviours of both $ell_n$ and $k_n$. It is further demonstrated that orthogonal-access schemes, which are optimal when $ell_n = k_n$, can be strictly suboptimal.
This paper is concerned with decentralized estimation of a Gaussian source using multiple sensors. We consider a diversity scheme where only the sensor with the best channel sends their measurements over a fading channel to a fusion center, using the analog amplify and forwarding technique. The fusion centre reconstructs an MMSE estimate of the source based on the received measurements. A distributed version of the diversity scheme where sensors decide whether to transmit based only on their local channel information is also considered. We derive asymptotic expressions for the expected distortion (of the MMSE estimate at the fusion centre) of these schemes as the number of sensors becomes large. For comparison, asymptotic expressions for the expected distortion for a coherent multi-access scheme and an orthogonal access scheme are derived. We also study for the diversity schemes, the optimal power allocation for minimizing the expected distortion subject to average total power constraints. The effect of optimizing the probability of transmission on the expected distortion in the distributed scenario is also studied. It is seen that as opposed to the coherent multi-access scheme and the orthogonal scheme (where the expected distortion decays as 1/M, M being the number of sensors), the expected distortion decays only as 1/ln(M) for the diversity schemes. This reduction of the decay rate can be seen as a tradeoff between the simplicity of the diversity schemes and the strict synchronization and large bandwidth requirements for the coherent multi-access and the orthogonal schemes, respectively.
We consider a cognitive network consisting of n random pairs of cognitive transmitters and receivers communicating simultaneously in the presence of multiple primary users. Of interest is how the maximum throughput achieved by the cognitive users scales with n. Furthermore, how far these users must be from a primary user to guarantee a given primary outage. Two scenarios are considered for the network scaling law: (i) when each cognitive transmitter uses constant power to communicate with a cognitive receiver at a bounded distance away, and (ii) when each cognitive transmitter scales its power according to the distance to a considered primary user, allowing the cognitive transmitter-receiver distances to grow. Using single-hop transmission, suitable for cognitive devices of opportunistic nature, we show that, in both scenarios, with path loss larger than 2, the cognitive network throughput scales linearly with the number of cognitive users. We then explore the radius of a primary exclusive region void of cognitive transmitters. We obtain bounds on this radius for a given primary outage constraint. These bounds can help in the design of a primary network with exclusive regions, outside of which cognitive users may transmit freely. Our results show that opportunistic secondary spectrum access using single-hop transmission is promising.
This paper considers the comparison of noisy channels from the viewpoint of statistical decision theory. Various orderings are discussed, all formalizing the idea that one channel is better than another for information transmission. The main result is an equivalence relation that is proved for classical channels, quantum channels with classical encoding, and quantum channels with quantum encoding.
A rateless code-i.e., a rate-compatible family of codes-has the property that codewords of the higher rate codes are prefixes of those of the lower rate ones. A perfect family of such codes is one in which each of the codes in the family is capacity-achieving. We show by construction that perfect rateless codes with low-complexity decoding algorithms exist for additive white Gaussian noise channels. Our construction involves the use of layered encoding and successive decoding, together with repetition using time-varying layer weights. As an illustration of our framework, we design a practical three-rate code family. We further construct rich sets of near-perfect rateless codes within our architecture that require either significantly fewer layers or lower complexity than their perfect counterparts. Variations of the basic construction are also developed, including one for time-varying channels in which there is no a priori stochastic model.