Do you want to publish a course? Click here

Comparison of Noisy Channels and Reverse Data-Processing Theorems

88   0   0.0 ( 0 )
 Added by Francesco Buscemi
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

This paper considers the comparison of noisy channels from the viewpoint of statistical decision theory. Various orderings are discussed, all formalizing the idea that one channel is better than another for information transmission. The main result is an equivalence relation that is proved for classical channels, quantum channels with classical encoding, and quantum channels with quantum encoding.



rate research

Read More

We study the problem of strong coordination of the actions of two nodes $X$ and $Y$ that communicate over a discrete memoryless channel (DMC) such that the actions follow a prescribed joint probability distribution. We propose two novel random coding schemes and a polar coding scheme for this noisy strong coordination problem, and derive inner bounds for the respective strong coordination capacity region. The first scheme is a joint coordination-channel coding scheme that utilizes the randomness provided by the DMC to reduce the amount of local randomness required to generate the sequence of actions at Node $Y$. Based on this random coding scheme, we provide a characterization of the capacity region for two special cases of the noisy strong coordination setup, namely, when the actions at Node $Y$ are determined by Node $X$ and when the DMC is a deterministic channel. The second scheme exploits separate coordination and channel coding where local randomness is extracted from the channel after decoding. The third scheme is a joint coordination-channel polar coding scheme for strong coordination. We show that polar codes are able to achieve the established inner bound to the noisy strong coordination capacity region and thus provide a constructive alternative to a random coding proof. Our polar coding scheme also offers a constructive solution to a channel simulation problem where a DMC and shared randomness are employed together to simulate another DMC. Finally, by leveraging the random coding results for this problem, we present an example in which the proposed joint scheme is able to strictly outperform the separate scheme in terms of achievable communication rate for the same amount of injected randomness into both systems. Thus, we establish the sub-optimality of the separation of strong coordination and channel coding with respect to the communication rate over the DMC.
We consider quantum channels with two senders and one receiver. For an arbitrary such channel, we give multi-letter characterizations of two different two-dimensional capacity regions. The first region characterizes the rates at which it is possible for one sender to send classical information while the other sends quantum information. The second region gives the rates at which each sender can send quantum information. We give an example of a channel for which each region has a single-letter description, concluding with a characterization of the rates at which each user can simultaneously send classical and quantum information.
Because of its high data density and longevity, DNA is emerging as a promising candidate for satisfying increasing data storage needs. Compared to conventional storage media, however, data stored in DNA is subject to a wider range of errors resulting from various processes involved in the data storage pipeline. In this paper, we consider correcting duplication errors for both exact and noisy tandem duplications of a given length k. An exact duplication inserts a copy of a substring of length k of the sequence immediately after that substring, e.g., ACGT to ACGACGT, where k = 3, while a noisy duplication inserts a copy suffering from substitution noise, e.g., ACGT to ACGATGT. Specifically, we design codes that can correct any number of exact duplication and one noisy duplication errors, where in the noisy duplication case the copy is at Hamming distance 1 from the original. Our constructions rely upon recovering the duplication root of the stored codeword. We characterize the ways in which duplication errors manifest in the root of affected sequences and design efficient codes for correcting these error patterns. We show that the proposed construction is asymptotically optimal, in the sense that it has the same asymptotic rate as optimal codes correcting exact duplications only.
204 - Anthony Reveillac 2009
In recent years, infinite-dimensional methods have been introduced for the Gaussian channels estimation. The aim of this paper is to study the application of similar methods to Poisson channels. In particular we compute the Bayesian estimator of a Poisson channel using the likelihood ratio and the discrete Malliavin gradient. This algorithm is suitable for numerical implementation via the Monte-Carlo scheme. As an application we provide an new proof of the formula obtained recently by Guo, Shamai and Verduu relating some derivatives of the input-output mutual information of a time-continuous Poisson channel and the conditional mean estimator of the input. These results are then extended to mixed Gaussian-Poisson channels.
We study the problem of strong coordination of actions of two agents $X$ and $Y$ that communicate over a noisy communication channel such that the actions follow a given joint probability distribution. We propose two novel schemes for this noisy strong coordination problem, and derive inner bounds for the underlying strong coordination capacity region. The first scheme is a joint coordination-channel coding scheme that utilizes the randomness provided by the communication channel to reduce the local randomness required in generating the action sequence at agent $Y$. The second scheme exploits separate coordination and channel coding where local randomness is extracted from the channel after decoding. Finally, we present an example in which the joint scheme is able to outperform the separate scheme in terms of coordination rate.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا