Do you want to publish a course? Click here

On some difficulties with a posterior probability approximation technique

111   0   0.0 ( 0 )
 Added by Christian Robert
 Publication date 2008
and research's language is English




Ask ChatGPT about the research

In Scott (2002) and Congdon (2006), a new method is advanced to compute posterior probabilities of models under consideration. It is based solely on MCMC outputs restricted to single models, i.e., it is bypassing reversible jump and other model exploration techniques. While it is indeed possible to approximate posterior probabilities based solely on MCMC outputs from single models, as demonstrated by Gelfand and Dey (1994) and Bartolucci et al. (2006), we show that the proposals of Scott (2002) and Congdon (2006) are biased and advance several arguments towards this thesis, the primary one being the confusion between model-based posteriors and joint pseudo-posteriors. From a practical point of view, the bias in Scotts (2002) approximation appears to be much more severe than the one in Congdons (2006), the later being often of the same magnitude as the posterior probability it approximates, although we also exhibit an example where the divergence from the true posterior probability is extreme.



rate research

Read More

124 - Xinjia Chen 2009
In this paper, we develop an approach for optimizing the explicit binomial confidence interval recently derived by Chen et al. The optimization reduces conservativeness while guaranteeing prescribed coverage probability.
While there have been a lot of recent developments in the context of Bayesian model selection and variable selection for high dimensional linear models, there is not much work in the presence of change point in literature, unlike the frequentist counterpart. We consider a hierarchical Bayesian linear model where the active set of covariates that affects the observations through a mean model can vary between different time segments. Such structure may arise in social sciences/ economic sciences, such as sudden change of house price based on external economic factor, crime rate changes based on social and built-environment factors, and others. Using an appropriate adaptive prior, we outline the development of a hierarchical Bayesian methodology that can select the true change point as well as the true covariates, with high probability. We provide the first detailed theoretical analysis for posterior consistency with or without covariates, under suitable conditions. Gibbs sampling techniques provide an efficient computational strategy. We also consider small sample simulation study as well as application to crime forecasting applications.
Exact inference for hidden Markov models requires the evaluation of all distributions of interest - filtering, prediction, smoothing and likelihood - with a finite computational effort. This article provides sufficient conditions for exact inference for a class of hidden Markov models on general state spaces given a set of discretely collected indirect observations linked non linearly to the signal, and a set of practical algorithms for inference. The conditions we obtain are concerned with the existence of a certain type of dual process, which is an auxiliary process embedded in the time reversal of the signal, that in turn allows to represent the distributions and functions of interest as finite mixtures of elementary densities or products thereof. We describe explicitly how to update recursively the parameters involved, yielding qualitatively similar results to those obtained with Baum--Welch filters on finite state spaces. We then provide practical algorithms for implementing the recursions, as well as approximations thereof via an informed pruning of the mixtures, and we show superior performance to particle filters both in accuracy and computational efficiency. The code for optimal filtering, smoothing and parameter inference is made available in the Julia package DualOptimalFiltering.
The prior distribution on parameters of a likelihood is the usual starting point for Bayesian uncertainty quantification. In this paper, we present a different perspective. Given a finite data sample $Y_{1:n}$ of size $n$ from an infinite population, we focus on the missing $Y_{n+1:infty}$ as the source of statistical uncertainty, with the parameter of interest being known precisely given $Y_{1:infty}$. We argue that the foundation of Bayesian inference is to assign a predictive distribution on $Y_{n+1:infty}$ conditional on $Y_{1:n}$, which then induces a distribution on the parameter of interest. Demonstrating an application of martingales, Doob shows that choosing the Bayesian predictive distribution returns the conventional posterior as the distribution of the parameter. Taking this as our cue, we relax the predictive machine, avoiding the need for the predictive to be derived solely from the usual prior to posterior to predictive density formula. We introduce the martingale posterior distribution, which returns Bayesian uncertainty directly on any statistic of interest without the need for the likelihood and prior, and this distribution can be sampled through a computational scheme we name predictive resampling. To that end, we introduce new predictive methodologies for multivariate density estimation, regression and classification that build upon recent work on bivariate copulas.
Recently a new algorithm for sampling posteriors of unnormalised probability densities, called ABC Shadow, was proposed in [8]. This talk introduces a global optimisation procedure based on the ABC Shadow simulation dynamics. First the general method is explained, and then results on simulated and real data are presented. The method is rather general, in the sense that it applies for probability densities that are continuously differentiable with respect to their parameters
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا