No Arabic abstract
Exact inference for hidden Markov models requires the evaluation of all distributions of interest - filtering, prediction, smoothing and likelihood - with a finite computational effort. This article provides sufficient conditions for exact inference for a class of hidden Markov models on general state spaces given a set of discretely collected indirect observations linked non linearly to the signal, and a set of practical algorithms for inference. The conditions we obtain are concerned with the existence of a certain type of dual process, which is an auxiliary process embedded in the time reversal of the signal, that in turn allows to represent the distributions and functions of interest as finite mixtures of elementary densities or products thereof. We describe explicitly how to update recursively the parameters involved, yielding qualitatively similar results to those obtained with Baum--Welch filters on finite state spaces. We then provide practical algorithms for implementing the recursions, as well as approximations thereof via an informed pruning of the mixtures, and we show superior performance to particle filters both in accuracy and computational efficiency. The code for optimal filtering, smoothing and parameter inference is made available in the Julia package DualOptimalFiltering.
We consider a Bayesian hierarchical version of the normal theory general linear model which is practically relevant in the sense that it is general enough to have many applications and it is not straightforward to sample directly from the corresponding posterior distribution. Thus we study a block Gibbs sampler that has the posterior as its invariant distribution. In particular, we establish that the Gibbs sampler converges at a geometric rate. This allows us to establish conditions for a central limit theorem for the ergodic averages used to estimate features of the posterior. Geometric ergodicity is also a key component for using batch means methods to consistently estimate the variance of the asymptotic normal distribution. Together, our results give practitioners the tools to be as confident in inferences based on the observations from the Gibbs sampler as they would be with inferences based on random samples from the posterior. Our theoretical results are illustrated with an application to data on the cost of health plans issued by health maintenance organizations.
We provide a sufficient criterion for the unique parameter identification of combinatorially symmetric Hidden Markov Models based on the structure of their transition matrix. If the observed states of the chain form a zero forcing set of the graph of the Markov model then it is uniquely identifiable and an explicit reconstruction method is given.
Recently a new algorithm for sampling posteriors of unnormalised probability densities, called ABC Shadow, was proposed in [8]. This talk introduces a global optimisation procedure based on the ABC Shadow simulation dynamics. First the general method is explained, and then results on simulated and real data are presented. The method is rather general, in the sense that it applies for probability densities that are continuously differentiable with respect to their parameters
Bayesian inference for nonlinear diffusions, observed at discrete times, is a challenging task that has prompted the development of a number of algorithms, mainly within the computational statistics community. We propose a new direction, and accompanying methodology, borrowing ideas from statistical physics and computational chemistry, for inferring the posterior distribution of latent diffusion paths and model parameters, given observations of the process. Joint configurations of the underlying process noise and of parameters, mapping onto diffusion paths consistent with observations, form an implicitly defined manifold. Then, by making use of a constrained Hamiltonian Monte Carlo algorithm on the embedded manifold, we are able to perform computationally efficient inference for an extensive class of discretely observed diffusion models. Critically, in contrast with other approaches proposed in the literature, our methodology is highly automated, requiring minimal user intervention and applying alike in a range of settings, including: elliptic or hypo-elliptic systems; observations with or without noise; linear or non-linear observation operators. Exploiting Markovianity, we propose a variant of the method with complexity that scales linearly in the resolution of path discretisation and the number of observation times.
In this paper, we propose new semiparametric procedures for making inference on linear functionals and their functions of two semicontinuous populations. The distribution of each population is usually characterized by a mixture of a discrete point mass at zero and a continuous skewed positive component, and hence such distribution is semicontinuous in the nature. To utilize the information from both populations, we model the positive components of the two mixture distributions via a semiparametric density ratio model. Under this model setup, we construct the maximum empirical likelihood estimators of the linear functionals and their functions, and establish the asymptotic normality of the proposed estimators. We show the proposed estimators of the linear functionals are more efficient than the fully nonparametric ones. The developed asymptotic results enable us to construct confidence regions and perform hypothesis tests for the linear functionals and their functions. We further apply these results to several important summary quantities such as the moments, the mean ratio, the coefficient of variation, and the generalized entropy class of inequality measures. Simulation studies demonstrate the advantages of our proposed semiparametric method over some existing methods. Two real data examples are provided for illustration.