Do you want to publish a course? Click here

Polarization and frequency disentanglement of photons via stochastic polarization mode dispersion

227   0   0.0 ( 0 )
 Added by Phoenix S. Y. Poon
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the quantum decoherence of frequency and polarization variables of photons via polarization mode dispersion in optical fibers. By observing the analogy between the propagation equation of the field and the Schrodinger equation, we develop a master equation under Markovian approximation and analytically solve for the field density matrix. We identify distinct decay behaviors for the polarization and frequency variables for single-photon and two-photon states. For the single photon case, purity functions indicate that complete decoherence for each variable is possible only for infinite fiber length. For entangled two-photon states passing through separate fibers, entanglement associated with each variable can be completely destroyed after characteristic finite propagation distances. In particular, we show that frequency disentanglement is independent of the initial polarization status. For propagation of two photons in a common fiber, the evolution of a polarization singlet state is addressed. We show that while complete polarization disentanglement occurs at a finite propagation distance, frequency entanglement could survive at any finite distance for gaussian states.



rate research

Read More

Spin bath polarization is the key to enhancing the sensitivity of quantum sensing and information processing. Significant effort has been invested in identifying the consequences of quantumness and its control for spin-bath polarization. Here, by contrast, we focus on the adverse role of quantum correlations (entanglement) in a spin bath that can impede its cooling in many realistic scenarios. We propose to remove this impediment by modified cooling schemes, incorporating probe-induced disentanglement via alternating, non-commuting probe-bath interactions, so as to suppress the buildup of quantum correlations in the bath. The resulting bath polarization is thereby exponentially enhanced. The underlying thermodynamic principles have far-reaching implications for quantum technological applications
Biphoton frequency comb (BFC) having quantum entanglement in a high dimensional system is widely applicable to quantum communication and quantum computation. However, a dozen mode realized so far has not been enough to realize its full potential. Here, we show a massive-mode BFC with polarization entanglement experimentally realized by a nonlinear optical waveguide resonator. The generated BFC at least 1400 modes is broad and dense, that strongly enhances the advantage of BFC. We also demonstrated a versatile property of the present BFC, which enables us to prepare both the frequency-multiplexed entangled photon pair and the high dimensional hyperentangled one. The versatile, stable and highly efficient system with the massive-mode BFC will open up a large-scale photonic quantum information platform.
We present results of a bright polarization-entangled photon source operating at 1552 nm via type-II collinear degenerate spontaneous parametric down-conversion in a periodically poled potassium titanyl phosphate crystal. We report a conservative inferred pair generation rate of 123,000 pairs/s/mW into collection modes. Minimization of spectral and spatial entanglement was achieved by group velocity matching the pump, signal and idler modes and through properly focusing the pump beam. By utilizing a pair of calcite beam displacers, we are able to overlap photons from adjacent down-conversion processes to obtain polarization-entanglement visibility of 94.7 +/- 1.1% with accidentals subtracted.
We propose a method for the generation of a large variety of entangled states, encoded in the polarization degrees of freedom of N photons, within the same experimental setup. Starting with uncorrelated photons, emitted from N arbitrary single photon sources, and using linear optical tools only, we demonstrate the creation of all symmetric states, e.g., GHZ- and W-states, as well as all symmetric and non-symmetric total angular momentum eigenstates of the N qubit compound.
342 - Paul G. Kwiat 1998
Using the process of spontaneous parametric down conversion in a novel two-crystal geometry, one can generate a source of polarization-entangled photon pairs which is orders of magnitude brighter than previous sources. We have measured a high level of entanglement between photons emitted over a relatively large collection angle, and over a 10-nm bandwidth. As a demonstration of the source intensity, we obtained a 242-$sigma$ violation of Bells inequalities in less than three minutes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا