Do you want to publish a course? Click here

Approximate Unitary Equivalence in Simple C^*-algebras of Tracial Rank One

144   0   0.0 ( 0 )
 Added by Huaxin Lin
 Publication date 2010
  fields
and research's language is English
 Authors Huaxin Lin




Ask ChatGPT about the research

Let $C$ be a unital AH-algebra and let $A$ be a unital separable simple C*-algebra with tracial rank no more than one. Suppose that $phi, psi: Cto A$ are two unital monomorphisms. With some restriction on $C,$ we show that $phi$ and $psi$ are approximately unitarily equivalent if and only if [phi]=[psi] in KL(C,A) taucirc phi=taucirc psi for all tracial states of A and phi^{ddag}=psi^{ddag}, here phi^{ddag} and psi^{ddag} are homomorphisms from $U(C)/CU(C)to U(A)/CU(A) induced by phi and psi, respectively, and where CU(C) and CU(A) are closures of the subgroup generated by commutators of the unitary groups of C and B.



rate research

Read More

246 - Huaxin Lin 2009
Let $epsilon>0$ be a positive number. Is there a number $delta>0$ satisfying the following? Given any pair of unitaries $u$ and $v$ in a unital simple $C^*$-algebra $A$ with $[v]=0$ in $K_1(A)$ for which $$ |uv-vu|<dt, $$ there is a continuous path of unitaries ${v(t): tin [0,1]}subset A$ such that $$ v(0)=v, v(1)=1 and |uv(t)-v(t)u|<epsilon forall tin [0,1]. $$ An answer is given to this question when $A$ is assumed to be a unital simple $C^*$-algebra with tracial rank no more than one. Let $C$ be a unital separable amenable simple $C^*$-algebra with tracial rank no more than one which also satisfies the UCT. Suppose that $phi: Cto A$ is a unital monomorphism and suppose that $vin A$ is a unitary with $[v]=0$ in $K_1(A)$ such that $v$ almost commutes with $phi.$ It is shown that there is a continuous path of unitaries ${v(t): tin [0,1]}$ in $A$ with $v(0)=v$ and $v(1)=1$ such that the entire path $v(t)$ almost commutes with $phi,$ provided that an induced Bott map vanishes. Oth
191 - Huaxin Lin 2013
Let $A$ be a unital separable simple amenable $C^*$-algebra with finite tracial rank which satisfies the Universal Coefficient Theorem (UCT). Suppose $af$ and $bt$ are two automorphisms with the Rokhlin property that {induce the same action on the $K$-theoretical data of $A$.} We show that $af$ and $bt$ are strongly cocycle conjugate and uniformly approximately conjugate, that is, there exists a sequence of unitaries ${u_n}subset A$ and a sequence of strongly asymptotically inner automorphisms $sigma_n$ such that $$ af={rm Ad}, u_ncirc sigma_ncirc btcirc sigma_n^{-1}andeqn lim_{ntoinfty}|u_n-1|=0, $$ and that the converse holds. {We then give a $K$-theoretic description as to exactly when $af$ and $bt$ are cocycle conjugate, at least under a mild restriction. Moreover, we show that given any $K$-theoretical data, there exists an automorphism $af$ with the Rokhlin property which has the same $K$-theoretical data.
156 - Huaxin Lin 2009
Let $C$ and $A$ be two unital separable amenable simple C*-algebras with tracial rank no more than one. Suppose that $C$ satisfies the Universal Coefficient Theorem and suppose that $phi_1, phi_2: Cto A$ are two unital monomorphisms. We show that there is a continuous path of unitaries ${u_t: tin [0, infty)}$ of $A$ such that $$ lim_{ttoinfty}u_t^*phi_1(c)u_t=phi_2(c)tforal cin C $$ if and only if $[phi_1]=[phi_2]$ in $KK(C,A),$ $phi_1^{ddag}=phi_2^{ddag},$ $(phi_1)_T=(phi_2)_T$ and a rotation related map $bar{R}_{phi_1,phi_2}$ associated with $phi_1$ and $phi_2$ is zero. Applying this result together with a result of W. Winter, we give a classification theorem for a class ${cal A}$ of unital separable simple amenable CA s which is strictly larger than the class of separable CA s whose tracial rank are zero or one. The class contains all unital simple ASH-algebras whose state spaces of $K_0$ are the same as the tracial state spaces as well as the simple inductive limits of dimension drop circle algebras. Moreover it contains some unital simple ASH-algebras whose $K_0$-groups are not Riesz. One consequence of the main result is that all unital simple AH-algebras which are ${cal Z}$-stable are isomorphic to ones with no dimension growth.
A class of $C^*$-algebras, to be called those of generalized tracial rank one, is introduced, and classified by the Elliott invariant. A second class of unital simple separable amenable $C^*$-algebras, those whose tensor products with UHF-algebras of infinite type are in the first class, to be referred to as those of rational generalized tracial rank one, is proved to exhaust all possible values of the Elliott invariant for unital finite simple separable amenable ${cal Z}$-stable $C^*$-algebras. An isomorphism theorem for a special sub-class of those $C^*$-algebras are presented. This provides the basis for the classification of $C^*$-algebras with rational generalized tracial rank one in Part II.
Let $G$ be a locally compact group. It is not always the case that its reduced C*-algebra $C^*_r(G)$ admits a tracial state. We exhibit closely related necessary and sufficient conditions for the existence of such. We gain a complete answer when $G$ compactly generated. In particular for $G$ almost connected, or more generally when $C^*_r(G)$ is nuclear, the existence of a trace is equivalent to amenability. We exhibit two examples of classes of totally disconnected groups for which $C^*_r(G)$ does not admit a tracial state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا