Do you want to publish a course? Click here

Tunneling Anisotropic Magnetoresistance in Co/AlOx/Au Tunnel Junctions

180   0   0.0 ( 0 )
 Added by Ruisheng Liu
 Publication date 2008
  fields Physics
and research's language is English
 Authors R. S. Liu




Ask ChatGPT about the research

We observe spin-valve-like effects in nano-scaled thermally evaporated Co/AlOx/Au tunnel junctions. The tunneling magnetoresistance is anisotropic and depends on the relative orientation of the magnetization direction of the Co electrode with respect to the current direction. We attribute this effect to a two-step magnetization reversal and an anisotropic density of states resulting from spin-orbit interaction. The results of this study points to future applications of novel spintronics devices involving only one ferromagnetic layer.



rate research

Read More

Using a simple quantum-mechanical model, we explore a tunneling anisotropic magnetoresistance (TAMR) effect in ferroelectric tunnel junctions (FTJs) with a ferromagnetic electrode and a ferroelectric barrier layer, which spontaneous polarization gives rise to the Rashba and Dresselhaus spin-orbit coupling (SOC). For realistic parameters of the model, we predict sizable TAMR measurable experimentally. For asymmetric FTJs, which electrodes have different work functions, the built-in electric field affects the SOC parameters and leads to TAMR dependent on ferroelectric polarization direction. The SOC change with polarization switching affects tunneling conductance, revealing a new mechanism of tunneling electroresistance (TER). These results demonstrate new functionalities of FTJs which can be explored experimentally and used in electronic devices.
We report observations of tunneling anisotropic magnetoresitance (TAMR) in vertical tunnel devices with a ferromagnetic multilayer-(Co/Pt) electrode and a non-magnetic Pt counter-electrode separated by an AlOx barrier. In stacks with the ferromagnetic electrode terminated by a Co film the TAMR magnitude saturates at 0.15% beyond which it shows only weak dependence on the magnetic field strength, bias voltage, and temperature. For ferromagnetic electrodes terminated by two monolayers of Pt we observe order(s) of magnitude enhancement of the TAMR and a strong dependence on field, temperature and bias. Discussion of experiments is based on relativistic ab initio calculations of magnetization orientation dependent densities of states of Co and Co/Pt model systems.
The effects of the spin-orbit interaction on the tunneling magnetoresistance of ferromagnet/semiconductor/normal metal tunnel junctions are investigated. Analytical expressions for the tunneling anisotropic magnetoresistance (TAMR) are derived within an approximation in which the dependence of the magnetoresistance on the magnetization orientation in the ferromagnet originates from the interference between Bychkov-Rashba and Dresselhaus spin-orbit couplings that appear at junction interfaces and in the tunneling region. We also investigate the transport properties of ferromagnet/semiconductor/ferromagnet tunnel junctions and show that in such structures the spin-orbit interaction leads not only to the TAMR effect but also to the anisotropy of the conventional tunneling magnetoresistance (TMR). The resulting anisotropic tunneling magnetoresistance (ATMR) depends on the absolute magnetization directions in the ferromagnets. Within the proposed model, depending on the magnetization directions in the ferromagnets, the interplay of Bychkov-Rashba and Dresselhaus spin-orbit couplings produces differences between the rates of transmitted and reflected spins at the ferromagnet/seminconductor interfaces, which results in an anisotropic local density of states at the Fermi surface and in the TAMR and ATMR effects. Model calculations for Fe/GaAs/Fe tunnel junctions are presented. Furthermore, based on rather general symmetry considerations, we deduce the form of the magnetoresistance dependence on the absolute orientations of the magnetizations in the ferromagnets.
We report experiments on epitaxially grown Fe/GaAs/Au tunnel junctions demonstrating that the tunneling anisotropic magnetoresistance (TAMR) effect can be controlled by a magnetic field. Theoretical modelling shows that the interplay of the orbital effects of a magnetic field and the Dresselhaus spin-orbit coupling in the GaAs barrier leads to an independent contribution to the TAMR effect with uniaxial symmetry, whereas the Bychkov-Rashba spin-orbit coupling does not play a role. The effect is intrinsic to barriers with bulk inversion asymmetry.
While the effects of lattice mismatch-induced strain, mechanical strain, as well as the intrinsic strain of thin films are sometimes detrimental, resulting in mechanical deformation and failure, strain can also be usefully harnessed for applications such as data storage, transistors, solar cells, and strain gauges, among other things. Here, we demonstrate that quantum transport across magnetic tunnel junctions (MTJs) can be significantly affected by the introduction of controllable mechanical strain, achieving an enhancement factor of ~2 in the experimental tunneling magnetoresistance (TMR) ratio. We further correlate this strain-enhanced TMR with coherent spin tunneling through the MgO barrier. Moreover, the strain-enhanced TMR is analyzed using non-equilibrium Greens function (NEGF) quantum transport calculations. Our results help elucidate the TMR mechanism at the atomic level and can provide a new way to enhance, as well as tune, the quantum properties in nanoscale materials and devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا