Do you want to publish a course? Click here

The microscopic pairing gap in a slab of nuclear matter for the Argonne v18 NN-potential

104   0   0.0 ( 0 )
 Added by Sergey Pankratov
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

Ab initio gap equation for ^1S_0 pairing in a nuclear slab is solved for the Argonne v18 NN-potential. The gap function is compared in detail with the one found previously for the separable form of the Paris potential. The difference between the two gaps turned out to be about 10%. Dependence of the gap on the chemical potential mu is analyzed.



rate research

Read More

We report on shell-model calculations employing effective interactions derived from a new realistic nucleon-nucleon (NN) potential based on chiral effective field theory. We present results for 18O, 134Te, and 210Po. Our results are in excellent agreement with experiment indicating a remarkable predictive power of the chiral NN potential for low-energy microscopic nuclear structure.
169 - B.Krippa 1999
The effective field theory of NN interactions in nuclear matter is considered. Due to the Pauli principle the effective NN amplitude is not affected by the shallow bound states. We show that the next-to-leading order terms in the chiral expansion of the effective NN potential can be interpreted as corrections so the expansion is systematic. The value of potential energy per particle is calculated and some issues concerning the chiral effective theory of nuclear matter are outlined.
The self-energy effect on the neutron-proton (np) pairing gap is investigated up to the third order within the framework of the extend Bruecker-Hartree-Fock (BHF) approach combined with the BCS theory. The self-energy up to the second-order contribution turns out to reduce strongly the effective energy gap, while the emph{renormalization} term enhances it significantly. In addition, the effect of the three-body force on the np pairing gap is shown to be negligible. To connect the present results with the np pairing in finite nuclei, an effective density-dependent zero-range pairing force is established with the parameters calibrated to the microscopically calculated energy gap.
The energy- and density-dependent single-particle potential for nucleons is constructed in a medium of infinite isospin-symmetric nuclear matter starting from realistic nuclear interactions derived within the framework of chiral effective field theory. The leading-order terms from both two- and three-nucleon forces give rise to real, energy-independent contributions to the nucleon self-energy. The Hartree-Fock contribution from the two-nucleon force is attractive and strongly momentum dependent, in contrast to the contribution from the three-nucleon force which provides a nearly constant repulsive mean field that grows approximately linearly with the nuclear density. Together, the leading-order perturbative contributions yield an attractive single-particle potential that is however too weak compared to phenomenology. Second-order contributions from two- and three-body forces then provide the additional attraction required to reach the phenomenological depth. The imaginary part of the optical potential, which is positive (negative) for momenta below (above) the Fermi momentum, arises at second-order and is nearly inversion-symmetric about the Fermi surface when two-nucleon interactions alone are present. The imaginary part is strongly absorptive and requires the inclusion of an effective mass correction as well as self-consistent single-particle energies to attain qualitative agreement with phenomenology.
86 - B.Krippa 2000
The effective chiral theory of the in-medium NN interactions is considered. The shallow bound states, which complicate the effective field theory analysis in vacuum do not exist in matter. We show that the next-to-leading order terms in the chiral expansion of the effective Lagrangian can be interpreted as corrections so that the expansion is systematic. The Low Energy Effective Constants of this Lagrangian are found to satisfy the concept of naturalness. The potential energy per particle is calculated. The problems and challenges in constructing the chiral theory of nuclear matter are outlined.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا