Do you want to publish a course? Click here

Coherent Delocalization of Atomic Wave Packets in Driven Lattice Potentials

256   0   0.0 ( 0 )
 Added by Gabriele Ferrari
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Atomic wave packets loaded into a phase-modulated vertical optical-lattice potential exhibit a coherent delocalization dynamics arising from intraband transitions among Wannier-Stark levels. Wannier-Stark intraband transitions are here observed by monitoring the in situ wave-packet extent. By varying the modulation frequency, we find resonances at integer multiples of the Bloch frequency. The resonances show a Fourier-limited width for interrogation times up to 2 s. This can also be used to determine the gravity acceleration with ppm resolution.



rate research

Read More

We report on the realization of dynamical control of transport for ultra-cold Sr88 atoms loaded in an accelerated and amplitude-modulated 1D optical lattice. We tailor the energy dispersion of traveling wave packets and reversibly switch between Wannier-Stark localization and driven transport based on coherent tunneling. Within a Loschmidt-echo scheme where the atomic group velocities are reversed at once, we demonstrate a novel mirror for matter waves working independently of the momentum state and discuss possible applications to force measurements at micrometric scales.
We consider the spatiotemporal evolution of a wave packet in disordered nonlinear Schrodinger and anharmonic oscillator chains. In the absence of nonlinearity all eigenstates are spatially localized with an upper bound on the localization length (Anderson localization). Nonlinear terms in the equations of motion destroy Anderson localization due to nonintegrability and deterministic chaos. At least a finite part of an initially localized wave packet will subdiffusively spread without limits. We analyze the details of this spreading process. We compare the evolution of single site, single mode and general finite size excitations, and study the statistics of detrapping times. We investigate the properties of mode-mode resonances, which are responsible for the incoherent delocalization process.
The problems of cavity atom optics in the presence of an external strong coherent field are formulated as the problems of potential scattering of doubly-dressed atomic wave packets. Two types of potentials produced by various multiphoton Raman processes in a high-finesse cavity are examined. As an application the deflection of dressed atomic wave by a cavity mode is investigated. New momentum distribution of the atoms is derived that depends from the parameters of coherent field as well as photon states in the cavity.
We are able to clearly distinguish the processes responsible for enhanced low-intensity atomic Kerr nonlinearity, namely coherent population trapping and coherent population oscillations in experiments performed on the Rb D1 line, where one or the other process dominates under appropriate conditions. The potential of this new approach based on wave mixing for probing coherent atomic media is discussed. It allows the new spectral components to be detected with sub-kHz resolution, which is well below the laser linewidth limit. Spatial selectivity and enhanced sensitivity make this method useful for testing dilute cold atomic samples.
107 - Maryvonne Chalony 2011
When a resonant laser sent on an optically thick cold atomic cloud is abruptly switched off, a coherent flash of light is emitted in the forward direction. This transient phenomenon is observed due to the highly resonant character of the atomic scatterers. We analyze quantitatively its spatio-temporal properties and show very good agreement with theoretical predictions. Based on complementary experiments, the phase of the coherent field is reconstructed without interferometric tools.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا