Do you want to publish a course? Click here

Colossal Positive Magnetoresistance in a Doped Nearly Magnetic Semiconductor

127   0   0.0 ( 0 )
 Added by Rongwei Hu
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on a positive colossal magnetoresistance (MR) induced by metallization of FeSb$_{2}$, a nearly magnetic or Kondo semiconductor with 3d ions. We discuss contribution of orbital MR and quantum interference to enhanced magnetic field response of electrical resistivity.



rate research

Read More

Doping of the band insulator FeS$_2$ with Co on the Fe site introduces a small density of itinerant carriers and magnetic moments. The lattice constant, AC and DC magnetic susceptibility, magnetization, and specific heat have been measured over the $0le xle 0.085$ range of Co concentration. The variation of the AC susceptibility with hydrostatic pressure has also been measured in a small number of our samples. All of these quantities show systematic variation with $x$ including a paramagnetic to disordered ferromagnetic transition at $x=0.007pm 0.002$. A detailed analysis of the changes with temperature and magnetic field reveal small power law dependencies at low temperatures for samples near the critical concentration for magnetism, and just above the Curie temperature at higher $x$. In addition, the magnetic susceptibility and specific heat are non-analytic around H=0 displaying an extraordinarily sharp field dependence in this same temperature range. We interpret this behavior as due to the formation of Griffiths phases that result from the quenched disorder inherent in a doped semiconductor.
We report the existence of a field-induced ferromagnetic transition in the magnetically ordered state (<69 K) of an intermetallic compound, Tb5Si3, and this transition is distinctly first-order at 1.8 K (near 60 kOe), whereas it appears to become second order near 20 K. The finding we stress is that the electrical resistivity becomes suddenly large in the high-field state after this transition and this is observed in the entire temperature range in the magnetically ordered state. Such an enhancement of positive magnetoresistance (below 100 kOe) at the metamagnetic transition field is unexpected on the basis that the application of magnetic field should favor a low-resistive state due to alignment of spins.
Quantum nematic phases are analogous to classical liquid crystals. Like liquid crystals, which break the rotational symmetries of space, their quantum analogues break the point-group symmetry of the crystal due to strong electron-electron interactions, as in quantum Hall states, Sr3Ru2O7, and high temperature superconductors. Here, we present angle resolved magnetoresistance (AMRO) measurements that reveal a quantum nematic phase in the hexaboride EuB6. We identify the region in the temperature-magnetic field phase diagram where the magnetoresistance shows two-fold oscillations instead of the expected four-fold pattern. This is the same region where magnetic polarons were previously observed, suggesting that they drive the nematicity in EuB6. This is also the region of the phase diagram where EuB6 shows a colossal magnetoresistance (CMR). This novel interplay between magnetic and electronic properties could thus be harnessed for spintronic applications.
We report on giant positive magnetoresistance effect observed in VOx thin films, epitaxially grown on SrTiO3 substrate. The MR effect depends strongly on temperature and oxygen content and is anisotropic. At low temperatures its magnitude reaches 70% in a magnetic field of 5 T. Strong electron-electron interactions in the presence of strong disorder may qualitatively explain the results. An alternative explanation, related to a possible magnetic instability, is also discussed.
130 - C. Jozwiak , J. Graf , S.Y. Zhou 2009
By performing angle-resolved photoemission spectroscopy of the bilayer colossal magnetoresistive (CMR) manganite, $La_{2-2x}Sr_{1+2x}Mn_{2}O_{7}$, we provide the complete mapping of the Fermi level spectral weight topology. Clear and unambiguous bilayer splitting of the in-plane 3d$_{x^2-y^2}$ band, mapped throughout the Brillouin zone, and the full mapping of the 3d$_{3z^2-r^2}$ band are reported. Peculiar doping and temperature dependencies of these bands imply that as transition from the ferromagnetic metallic phase approaches, either as a function of doping or temperature, coherence along the c-axis between planes within the bilayer is lost, resulting in reduced interplane coupling. These results suggest that interplane coupling plays a large role in the CMR transition.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا