Do you want to publish a course? Click here

The Central Region of M83

148   0   0.0 ( 0 )
 Added by Ryan Houghton
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We combine VLT/ISAAC NIR spectroscopy with archival HST/WFPC2 and HST/NICMOS imaging to study the central 20x20 of M83. Our NIR indices for clusters in the circumnuclear star-burst region are inconsistent with simple instantaneous burst models. However, models of a single burst dispersed over a duration of 6 Myrs fit the data well and provide the clearest evidence yet of an age gradient along the star forming arc, with the youngest clusters nearest the north-east dust lane. The long slit kinematics show no evidence to support previous claims of a second hidden mass concentration, although we do observe changes in molecular gas velocity consistent with the presence of a shock at the edge of the dust lane.

rate research

Read More

Malin 1, being a class of giant low surface galaxies, continues to surprise us even today. The HST/F814W observation has shown that the central region of Malin 1 is more like a normal SB0/a galaxy, while the rest of the disk has the characteristic of a low surface brightness system. The AstroSat/UVIT observations suggest scattered recent star formation activity all over the disk, especially along the spiral arms. The central 9 ($sim 14$ kpc) region, similar to the size of the Milky Ways stellar disk, has a number of far-UV clumps - indicating recent star-formation activity. The high resolution UVIT/F154W image reveals far-UV emission within the bar region ($sim 4$ kpc) - suggesting the presence of hot, young stars in the bar. These young stars from the bar region are perhaps responsible for producing the strong emission lines such as H$alpha$, [OII] seen in the SDSS spectra. Malin 1B, a dwarf early-type galaxy, is interacting with the central region and probably responsible for inducing the recent star-formation activity in this galaxy.
We continue the analysis of the dataset of our spectroscopic observation campaign of M31, by deriving simple stellar population properties (age metallicity and alpha-elements overabundance) from the measurement of Lick/IDS absorption line indices. We describe their two-dimensional maps taking into account the dust distribution in M31. 80% of the values of our age measurements are larger than 10 Gyr. The central 100 arcsec of M31 are dominated by the stars of the classical bulge of M31. They are old (11-13 Gyr), metal-rich (as high as [Z/H]~0.35 dex) at the center with a negative gradient outwards and enhanced in alpha-elements ([alpha/Fe]~ 0.28+- 0.01 dex). The bar stands out in the metallicity map, where an almost solar value of [Z/H] (~0.02+-0.01 dex) with no gradient is observed along the bar position angle (55.7 deg) out to 600 arcsec from the center. In contrast, no signature of the bar is seen in the age and [alpha/Fe] maps, that are approximately axisymmetric, delivering a mean age and overabundance for the bar and the boxy-peanut bulge of 10-13 Gyr and 0.25-0.27 dex, respectively. The boxy/peanut-bulge has almost solar metallicity (-0.04+- 0.01 dex). The mass-to-light ratio of the three components is approximately constant at M/LV ~ 4.4-4.7 Msol/Lsol. The disk component at larger distances is made of a mixture of stars, as young as 3-4 Gyr, with solar metallicity and smaller M/LV (~3+-0.1 Msol/Lsol). We propose a two-phase formation scenario for the inner region of M31, where most of the stars of the classical bulge come into place together with a proto-disk, where a bar develops and quickly transforms it into a boxy-peanut bulge. Star formation continues in the bulge region, producing stars younger than 10 Gyr, in particular along the bar, enhancing its metallicity. The disk component appears to build up on longer time-scales.
The barred grand-design spiral M83 (NGC 5236) is one of the most studied galaxies given its proximity, orientation, and particular complexity. Nonetheless, many aspects of the central regions remain controversial conveying our limited understanding of the inner gas and stellar kinematics, and ultimately of the nucleus evolution. In this work, we present AO VLT-SINFONI data of its central ~235x140 pc with an unprecedented spatial resolution of ~0.2 arcsec, corresponding to ~4 pc. We have focused our study on the distribution and kinematics of the stars and the ionised and molecular gas by studying in detail the Pa_alpha and Br_gamma emission, the H_2 1-0S(1) line at 2.122 micron and the [FeII] line at 1.644 micron, together with the CO absorption bands at 2.293 micron and 2.323 micron. Our results reveal a complex situation where the gas and stellar kinematics are totally unrelated. Supernova explosions play an important role in shaping the gas kinematics, dominated by shocks and inflows at scales of tens of parsecs that make them unsuitable to derive general dynamical properties. We propose that the location of the nucleus of M83 is unlikely to be related to the off-centre optical nucleus. The study of the stellar kinematics reveals that the optical nucleus is a gravitationally bound massive star cluster with M_dyn = (1.1 pm 0.4)x10^7 M_sun, formed by a past starburst. The kinematic and photometric analysis of the cluster yield that the stellar content of the cluster is well described by an intermediate age population of log T(yr) = 8.0pm0.4, with a mass of M simeq (7.8pm2.4)x10^6 M_sun.
We have observed a sample of 64 small diameter sources towards the central -6 degree < l< 6 degree, -2 degree < b < 2 degree of the Galaxy with the aim of studying the Faraday rotation measure near the Galactic Centre (GC) region. All the sources were observed at 6 and 3.6 cm wavelengths using the ATCA and the VLA. Fifty nine of these sources are inferred to be extragalactic. The observations presented here constitute the first systematic study of the radio polarisation properties of the background sources towards this direction and increases the number of known extragalactic radio sources in this part of the sky by almost an order of magnitude. Based on the morphology, spectral indices and lack of polarised emission, we identify four Galactic HII regions in the sample.
Stellar kinematics show no evidence of hidden mass concentrations at the centre of M83. We show the clearest evidence yet of an age gradient along the starburst arc and interpret the arc to have formed from orbital motion away from a starforming region in the dust lane.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا