Do you want to publish a course? Click here

Hidden Grassmann Structure in the XXZ Model II: Creation Operators

110   0   0.0 ( 0 )
 Added by Smirnov#2
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

In this article we unveil a new structure in the space of operators of the XXZ chain. We consider the space of all quasi-local operators, which are products of the disorder field with arbitrary local operators. In analogy with CFT the disorder operator itself is considered as primary field. In our previous paper, we have introduced the annhilation operators which mutually anti-commute and kill the primary field. Here we construct the creation counterpart and prove the canonical anti-commutation relations with the annihilation operators. We show that the ground state averages of quasi-local operators created by the creation operators from the primary field are given by determinants.



rate research

Read More

243 - H. Boos , M. Jimbo , T. Miwa 2009
The Grassmann structure of the critical XXZ spin chain is studied in the limit to conformal field theory. A new description of Virasoro Verma modules is proposed in terms of Zamolodchikovs integrals of motion and two families of fermionic creation operators. The exact relation to the usual Virasoro description is found up to level 6.
136 - M. Jimbo , T. Miwa , F. Smirnov 2010
We study one-point functions of the sine-Gordon model on a cylinder. Our approach is based on a fermionic description of the space of descendent fields, developed in our previous works for conformal field theory and the sine-Gordon model on the plane. In the present paper we make an essential addition by giving a connection between various primary fields in terms of yet another kind of fermions. The one-point functions of primary fields and descendants are expressed in terms of a single function defined via the data from the thermodynamic Bethe Ansatz equations.
136 - M.Jimbo , T.Miwa , F.Smirnov 2008
We address the problem of computing temperature correlation functions of the XXZ chain, within the approach developed in our previous works. In this paper we calculate the expected values of a fermionic basis of quasi-local operators, in the infinite volume limit while keeping the Matsubara (or Trotter) direction finite. The result is expressed in terms of two basic quantities: a ratio $rho(z)$ of transfer matrix eigenvalues, and a nearest neighbour correlator $omega(z,xi)$. We explain that the latter is interpreted as the canonical second kind differential in the theory of deformed Abelian integrals.
162 - M. Jimbo , T. Miwa , F. Smirnov 2014
In our previous works on the XXZ chain of spin one half, we have studied the problem of constructing a basis of local operators whose members have simple vacuum expectation values. For this purpose a pair of fermionic creation operators have been introduced. In this article we extend this construction to the spin one case. We formulate the fusion procedure for the creation operators, and find a triplet of bosonic as well as two pairs of fermionic creation operators. We show that the resulting basis of local operators satisfies the dual reduced qKZ equation.
We construct a new example of the spinning-particle model without Grassmann variables. The spin degrees of freedom are described on the base of an inner anti-de Sitter space. This produces both $Gamma^mu$ and $Gamma^{mu u}$,-matrices in the course of quantization. Canonical quantization of the model implies the Dirac equation. We present the detailed analysis of both the Lagrangian and the Hamiltonian formulations of the model and obtain the general solution to the classical equations of motion. Comparing {it Zitterbewegung} of the spatial coordinate with the evolution of spin, we ask on the possibility of space-time interpretation for the inner space of spin. We enumerate similarities between our analogous model of the Dirac equation and the two-body system subject to confining potential which admits only the elliptic orbits of the order of de Broglie wave-length. The Dirac equation dictates the perpendicularity of the elliptic orbits to the direction of center-of-mass motion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا