In our previous works on the XXZ chain of spin one half, we have studied the problem of constructing a basis of local operators whose members have simple vacuum expectation values. For this purpose a pair of fermionic creation operators have been introduced. In this article we extend this construction to the spin one case. We formulate the fusion procedure for the creation operators, and find a triplet of bosonic as well as two pairs of fermionic creation operators. We show that the resulting basis of local operators satisfies the dual reduced qKZ equation.
The periodic $OSp(1|2)$ quantum spin chain has both a graded and a non-graded version. Naively, the Bethe ansatz solution for the non-graded version does not account for the complete spectrum of the transfer matrix, and we propose a simple mechanism for achieving completeness. In contrast, for the graded version, this issue does not arise. We also clarify the symmetries of bot
Based on the method of separation of variables due to Sklyanin, we construct a new integral representation for the scalar products of the Bethe states for the SU(2) XXX spin 1/2 chain obeying the periodic boundary condition. Due to the compactness of the symmetry group, a twist matrix must be introduced at the boundary in order to extract the separated variables properly. Then by deriving the integration measure and the spectrum of the separated variables, we express the inner product of an on-shell and an off-shell Bethe states in terms of a multiple contour integral involving a product of Baxter wave functions. Its form is reminiscent of the integral over the eigenvalues of a matrix model and is expected to be useful in studying the semi-classical limit of the product.
We study conformal higher spin (CHS) fields on constant curvature backgrounds. By employing parent formulation technique in combination with tractor description of GJMS operators we find a manifestly factorized form of the CHS wave operators for symmetric fields of arbitrary integer spin $s$ and gauge invariance of arbitrary order $tleq s$. In the case of the usual Fradkin-Tseytlin fields $t=1$ this gives a systematic derivation of the factorization formulas known in the literature while for $t>1$ the explicit formulas were not known. We also relate the gauge invariance of the CHS fields to the partially-fixed gauge invariance of the factors and show that the factors can be identified with (partially gauge-fixed) wave operators for (partially)-massless or special massive fields. As a byproduct, we establish a detailed relationship with the tractor approach and, in particular, derive the tractor form of the CHS equations and gauge symmetries.
Two branches of integrable open quantum-group invariant $D_{n+1}^{(2)}$ quantum spin chains are known. For one branch (epsilon=0), a complete Bethe ansatz solution has been proposed. However, the other branch (epsilon=1) has so far resisted solution. In an effort to address this problem, we consider here the simplest case n=1. We propose a Bethe ansatz solution, which however is not complete, as it describes only the transfer-matrix eigenvalues with odd degeneracy. We also consider a proposal for the missing eigenvalues.
We study algebras and correlation functions of local operators at half-BPS interfaces engineered by the stacks of D5 or NS5 branes in the 4d $mathcal{N}=4$ super Yang-Mills. The operator algebra in this sector is isomorphic to a truncation of the Yangian $mathcal{Y}(mathfrak{gl}_n)$. The correlators, encoded in a trace on the Yangian, are controlled by the inhomogeneous $mathfrak{sl}_n$ spin chain, where $n$ is the number of fivebranes: they are given in terms of matrix elements of transfer matrices associated to Verma modules, or equivalently of products of Baxters Q-operators. This can be viewed as a novel connection between the $mathcal{N}=4$ super Yang-Mills and integrable spin chains. We also remark on analogous constructions involving half-BPS Wilson lines.