We construct a Bernstein-Gelfand-Gelfand type resolution in terms of direct sums of Kac modules for the finite-dimensional irreducible tensor representations of the general linear superalgebra. As a consequence it follows that the unique maximal submodule of a corresponding reducible Kac module is generated by its proper singular vector.
We determine the Verma multiplicities and the characters of projective modules for atypical blocks in the BGG Category O for the general linear Lie superalgebras $frak{gl}(2|2)$ and $frak{gl}(3|1)$. We then explicitly determine the composition factor multiplcities of Verma modules in the atypicality 2 block of $frak{gl}(2|2)$.
We determine the Verma multiplicities of standard filtrations of projective modules for integral atypical blocks in the BGG category $mathcal{O}$ for the orthosymplectic Lie superalgebras $mathfrak{osp}(3|4)$ by way of translation functors. We then explicitly determine the composition factor multiplicities of Verma modules using BGG reciprocity.
In the present paper, we introduce a class of infinite Lie conformal superalgebras $mathcal{S}(p)$, which are closely related to Lie conformal algebras of extended Block type defined in cite{CHS}. Then all finite non-trivial irreducible conformal modules over $mathcal{S}(p)$ for $pinC^*$ are completely classified. As an application, we also present the classifications of finite non-trivial irreducible conformal modules over finite quotient algebras $mathfrak{s}(n)$ for $ngeq1$ and $mathfrak{sh}$ which is isomorphic to a subalgebra of Lie conformal algebra of $N=2$ superconformal algebra. Moreover, as a generalized version of $mathcal{S}(p)$, the infinite Lie conformal superalgebras $mathcal{GS}(p)$ are constructed, which have a subalgebra isomorphic to the finite Lie conformal algebra of $N=2$ superconformal algebra.
We study multiplicities of unipotent characters in tensor products of unipotent characters of GL(n,q). We prove that these multiplicities are polynomials in q with non-negative integer coefficients. We study the degree of these polynomials and give a necessary and sufficient condition in terms of the representation theory of symmetric groups for these polynomials to be non-zero.
We construct, for any finite commutative ring $R$, a family of representations of the general linear group $mathrm{GL}_n(R)$ whose intertwining properties mirror those of the principal series for $mathrm{GL}_n$ over a finite field.