Do you want to publish a course? Click here

MOST photometry and modeling of the rapidly oscillating (roAp) star gamma Equ

386   0   0.0 ( 0 )
 Added by Michael Gruberbauer
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Aims. Despite photometry and spectroscopy of its oscillations obtained over the past 25 years, the pulsation frequency spectrum of the rapidly oscillating Ap (roAp) star gamma Equ has remained poorly understood. Better time-series photometry, combined with recent advances to incorporate interior magnetic field geometry into pulsational models, enable us to perform improved asteroseismology of this roAp star. Methods. We obtained 19 days of continuous high-precision photometry of gamma Equ with the MOST (Microvariability & Oscillations of STars) satellite. The data were reduced with two different reduction techniques and significant frequencies were identified. Those frequencies were fitted by interpolating a grid of pulsation models that include dipole magnetic fields of various polar strengths. Results. We identify 7 frequencies in gamma Equ that we associate with 5 high-overtone p-modes and 1st and 2nd harmonics of the dominant p-mode. One of the modes and both harmonics are new discoveries for this star. Our best model solution (1.8 M_sun, log T_eff ~ 3.882; polar field strength ~8.1 kG) leads to unique mode identifications for these frequencies (ell = 0, 1, 2 and 4). This is the first purely asteroseismic fit to a grid of magnetic models. We measure amplitude and phase modulation of the primary frequency due to beating with a closely spaced frequency which had never been resolved. This casts doubts on theories that such modulation - unrelated to the rotation of the star - is due to a stochastic excitation mechanism.



rate research

Read More

Context: We present 31.2 days of nearly continuous MOST photometry of the roAp star 10Aql. Aims:The goal was to provide an unambiguous frequency identification for this little studied star, as well as to discuss the detected frequencies in the context of magnetic models and analyze the influence of the magnetic field on the pulsation. Methods: Using traditional Fourier analysis techniques on three independent data reductions, intrinsic frequencies for the star are identified. Theoretical non-adiabatic axisymmetric modes influenced by a magnetic field having polar field strengths Bp = 0-5kG were computed to compare the observations to theory. Results: The high-precision data allow us to identify three definite intrinsic pulsation frequencies and two other candidate frequencies with low S/N. Considering the observed spacings, only one (50.95microHz) is consistent with the main sequence nature of roAp stars. The comparison with theoretical models yields a best fit for a 1.95Msun model having solar metallicity, suppressed envelope convection, and homogenous helium abundance. Furthermore, our analysis confirms the suspected slow rotation of the star and sets new lower limits to the rotation period (Prot>1 month) and inclination (i>30pm10deg.). Conclusions:The observed frequency spectrum is not rich enough to unambiguously identify a model. On the other hand, the models hardly represent roAp stars in detail due to the approximations needed to describe the interactions of the magnetic field with stellar structure and pulsation. Consequently, errors in the model frequencies needed for the fitting procedure can only be estimated. Nevertheless, it is encouraging that models which suppress convection and include solar metallicity, in agreement with current concepts of roAp stars, fit the observations best.
We determined rotational period of practically nonrotating Ap star gamma Equ and claim $P_{rm rot}= 97$ years. This period is about 35000 times larger than the average rotational period among stars of the same spectral class. Paper discusses possible mechanism explaining the origin of this phenomenon.
Physical processes working in the stellar interiors as well as the evolution of stars depend on some fundamental stellar properties, such as mass, radius, luminosity, and chemical abundances. A classical way to test stellar interior models is to compare the predicted and observed location of a star on theoretical evolutionary tracks in a H-R diagram. This requires the best possible determinations of stellar mass, radius, luminosity and abundances. To derive its fundamental parameters, we observed the well-known rapidly oscillating Ap star, $gamma$ Equ, using the visible spectro-interferometer VEGA installed on the optical CHARA array. We computed the calibrated squared visibility and derived the limb-darkened diameter. We used the whole energy flux distribution, the parallax and this angular diameter to determine the luminosity and the effective temperature of the star. We obtained a limb-darkened angular diameter of 0.564~$pm$~0.017~mas and deduced a radius of $R$~=~2.20~$pm$~0.12~${rm R_{odot}}$. Without considering the multiple nature of the system, we derived a bolometric flux of $(3.12pm 0.21)times 10^{-7}$ erg~cm$^{-2}$~s$^{-1}$ and an effective temperature of 7364~$pm$~235~K, which is below the effective temperature that has been previously determined. Under the same conditions we found a luminosity of $L$~=~12.8~$pm$~1.4~${rm L_{odot}}$. When the contribution of the closest companion to the bolometric flux is considered, we found that the effective temperature and luminosity of the primary star can be, respectively, up to $sim$~100~K and up to $sim$~0.8~L$_odot$ smaller than the values mentioned above.These new values of the radius and effective temperature should bring further constraints on the asteroseismic modelling of the star.
In this paper we study periodic variability of the magnetic field in the Ap star 33 Lib. We found that its most probable period equals 83.5 years. There exist also possible shorter periods: 11.036 days, 7.649 days and 4.690 days. Analysis of the magnetic behavior of 33 Lib allows us to conclude, that the star shows the second longest period the slow rotator gamma Equ, the latter star with the period of 97 years.
101 - Th. Rivinius 2008
Using archival spectroscopic and photometric data, we searched for massive stars with Balmer-emission consistent with magnetically confined circumstellar material. HR 7355 is a formerly unknown He-strong star showing Balmer emission. At V=6.02 mag, it is one of the brightest objects simultaneously showing anomalous helium absorption and hydrogen emission. Among similar objects, only sigma Ori E has so far been subjected to any systematic analysis of the circumstellar material responsible for the emission. We argue that the double-wave photometric period of 0.52d corresponds to the rotation period. In tandem with the high projected equatorial velocity, v sin i=320 km/s, this short period suggests that HR 7355 is the most rapidly rotating He-strong star known to date; a class that was hitherto expected to host stars with slow to moderate rotation only.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا