No Arabic abstract
The longitudinal resistivity (rho_{xx}) and transverse resistivity (rho_{xy}) of MgB2 thin films in the mixed state were studied in detail. We found that the temperature dependencies of rho_{xx} and rho_{xy} at a fixed magnetic field (H) satisfy the scaling law of $rho_{xy}=Arho_{xx}^beta$, where the exponent beta varies around 2.0 for different fields. In the low field region (below 1T), beta maintains a constant value of 2.0 due to the weak pinning strength of the vortices, mainly from the superfluid of the pi band. When H>1T, beta drops abruptly to its lowest value at about 2T because of the proliferation of quasiparticles from the pi-band and, hence, the motion of the vortices from the superfluid of the sigma-band dominates the dissipation. As the field is increased further, the vortex pinning strength is weakened and beta increases monotonically towards 2.0 at a high field. All the results presented here are in good agreement with the expectation of the vortex physics of a multi-band superconductor.
The high resistivity of many bulk and film samples of MgB2 is most readily explained by the suggestion that only a fraction of the cross-sectional area of the samples is effectively carrying current. Hence the supercurrent (Jc) in such samples will be limited by the same area factor, arising for example from porosity or from insulating oxides present at the grain boundaries. We suggest that a correlation should exist, Jc ~ 1/{Rho(300K) - Rho(50K)}, where Rho(300K) - Rho(50K) is the change in the apparent resistivity from 300 K to 50 K. We report measurements of Rho(T) and Jc for a number of films made by hybrid physical-chemical vapor deposition which demonstrate this correlation, although the reduced effective area argument alone is not sufficient. We suggest that this argument can also apply to many polycrystalline bulk and wire samples of MgB2.
We report resistivity and the Hall effect measurements in the normal and superconducting states of MgB2 single crystal. The resistivity has been found to be anisotropic with slightly temperature dependent resistivity ratio of about 3.5. The Hall constant, with a magnetic field parallel to the Mg and B sheets is negative in contrast to the hole-like Hall response with a field directed along the c-axis indicating presence of both types of charge carriers and, thus, multi-band electronic structure of MgB2. The Hall effect in the mixed state shows no sign change anomaly reproducing the Hall effect behavior in clean limit type-II superconductors.
In this paper, we analyze the upper critical field of four MgB2 thin films, with different resistivity (between 5 to 50 mWcm) and critical temperature (between 29.5 to 38.8 K), measured up to 28 Tesla. In the perpendicular direction the critical fields vary from 13 to 24 T and we can estimate 42-57 T range in other direction. We observe linear temperature dependence even at low temperatures without saturation, in contrast to BCS theory. Considering the multiband nature of the superconductivity in MgB2, we conclude that two different scattering mechanisms influence separately resistivity and critical field. In this framework, resistivity values have been calculated from Hc2(T) curves and compared with the measured ones.
The current-voltage (I-V) characteristics of various MgB2 films have been studied at different magnetic fields parallel to c-axis. At fields mu0H between 0 and 5T, vortex liquid-glass transitions were found in the I-V isotherms. Consistently, the I-V curves measured at different temperatures show a scaling behavior in the framework of quasi-two-dimension (quasi-2D) vortex glass theory. However, at mu0 H >= 5T, a finite dissipation was observed down to the lowest temperature here, T=1.7K, and the I-V isotherms did not scale in terms of any known scaling law, of any dimensionality. We suggest that this may be caused by a mixture of sigma band vortices and pi band quasiparticles. Interestingly, the I-V curves at zero magnetic field can still be scaled according to the quasi-2D vortex glass formalism, indicating an equivalent effect of self-field due to persistent current and applied magnetic field.
Upper critical fields of four MgB2 thin films were measured up to 28 Tesla at Grenoble High Magnetic Field Laboratory. The films were grown by Pulsed Laser Deposition and showed critical temperatures ranging between 29.5 and 38.8 K and resistivities at 40 K varying from 5 to 50 mWcm. The critical fields in the perpendicular direction turned out to be in the 13-24 T range while they were estimated to be in 42-57 T the range in ab-planes. In contrast to the prediction of the BCS theory, we did not observe any saturation at low temperatures: a linear temperature dependence is exhibited even at lowest temperatures at which we made the measurements. Moreover, the critical field values seemed not to depend on the normal state resistivity value. In this paper, we analyze these data considering the multiband nature of superconductivity in MgB2 We will show how the scattering mechanisms that determine critical fields and resistivity can be different.