Do you want to publish a course? Click here

Generalized incidence theorems, homogeneous forms, and sum-product estimates in finite fields

157   0   0.0 ( 0 )
 Added by Derrick Hart
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

In recent years, sum-product estimates in Euclidean space and finite fields have been studied using a variety of combinatorial, number theoretic and analytic methods. Erdos type problems involving the distribution of distances, areas and volumes have also received much attention. In this paper we prove a relatively straightforward function version of an incidence results for points and planes previously established in cite{HI07} and cite{HIKR07}. As a consequence of our methods, we obtain sharp or near sharp results on the distribution of volumes determined by subsets of vector spaces over finite fields and the associated arithmetic expressions. In particular, our machinery enables us to prove that if $E subset {Bbb F}_q^d$, $d ge 4$, the $d$-dimensional vector space over a finite field ${Bbb F}_q$, of size much greater than $q^{frac{d}{2}}$, and if $E$ is a product set, then the set of volumes of $d$-dimensional parallelepipeds determined by $E$ covers ${Bbb F}_q$. This result is sharp as can be seen by taking $E$ to equal to $A times A times ... times A$, where $A$ is a sub-field of ${Bbb F}_q$ of size $sqrt{q}$. In three dimensions we establish the same result if $|E| gtrsim q^{{15/8}}$. We prove in three dimensions that the set of volumes covers a positive proportion of ${Bbb F}_q$ if $|E| ge Cq^{{3/2}}$. Finally we show that in three dimensions the set of volumes covers a positive proportion of ${Bbb F}_q$ if $|E| ge Cq^2$, without any further assumptions on $E$, which is again sharp as taking $E$ to be a 2-plane through the origin shows.



rate research

Read More

141 - Chengfei Xie , Gennian Ge 2021
We study some sum-product problems over matrix rings. Firstly, for $A, B, Csubseteq M_n(mathbb{F}_q)$, we have $$ |A+BC|gtrsim q^{n^2}, $$ whenever $|A||B||C|gtrsim q^{3n^2-frac{n+1}{2}}$. Secondly, if a set $A$ in $M_n(mathbb{F}_q)$ satisfies $|A|geq C(n)q^{n^2-1}$ for some sufficiently large $C(n)$, then we have $$ max{|A+A|, |AA|}gtrsim minleft{frac{|A|^2}{q^{n^2-frac{n+1}{4}}}, q^{n^2/3}|A|^{2/3}right}. $$ These improve the results due to The and Vinh (2020), and generalize the results due to Mohammadi, Pham, and Wang (2021). We also give a new proof for a recent result due to The and Vinh (2020). Our method is based on spectral graph theory and linear algebra.
In this paper we prove some results on sum-product estimates over arbitrary finite fields. More precisely, we show that for sufficiently small sets $Asubset mathbb{F}_q$ we have [|(A-A)^2+(A-A)^2|gg |A|^{1+frac{1}{21}}.] This can be viewed as the ErdH{o}s distinct distances problem for Cartesian product sets over arbitrary finite fields. We also prove that [max{|A+A|, |A^2+A^2|}gg |A|^{1+frac{1}{42}}, ~|A+A^2|gg |A|^{1+frac{1}{84}}.]
An oriented hypergraph is an oriented incidence structure that allows for the generalization of graph theoretic concepts to integer matrices through its locally signed graphic substructure. The locally graphic behaviors are formalized in the subobject classifier of incidence hypergraphs. Moreover, the injective envelope is calculated and shown to contain the class of uniform hypergraphs -- providing a combinatorial framework for the entries of incidence matrices. A multivariable all-minors characteristic polynomial is obtained for both the determinant and permanent of the oriented hypergraphic Laplacian and adjacency matrices arising from any integer incidence matrix. The coefficients of each polynomial are shown to be submonic maps from the same family into the injective envelope limited by the subobject classifier. These results provide a unifying theorem for oriented hypergraphic matrix-tree-type and Sachs-coefficient-type theorems. Finally, by specializing to bidirected graphs, the trivial subclasses for the degree-$k$ monomials of the Laplacian are shown to be in one-to-one correspondence with $k$-arborescences.
109 - Vincent Blevins , Ethan Lynch , 2021
We explore variants of ErdH os unit distance problem concerning dot products between successive pairs of points chosen from a large finite subset of either $mathbb F_q^d$ or $mathbb Z_q^d,$ where $q$ is a power of an odd prime. Specifically, given a large finite set of points $E$, and a sequence of elements of the base field (or ring) $(alpha_1,ldots,alpha_k)$, we give conditions guaranteeing the expected number of $(k+1)$-tuples of distinct points $(x_1,dots, x_{k+1})in E^{k+1}$ satisfying $x_j cdot x_{j+1}=alpha_j$ for every $1leq j leq k$.
In this paper, we prove some extensions of recent results given by Shkredov and Shparlinski on multiple character sums for some general families of polynomials over prime fields. The energies of polynomials in two and three variables are our main ingredients.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا