Do you want to publish a course? Click here

Exponential sum estimates over prime fields

133   0   0.0 ( 0 )
 Added by Thang Pham
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we prove some extensions of recent results given by Shkredov and Shparlinski on multiple character sums for some general families of polynomials over prime fields. The energies of polynomials in two and three variables are our main ingredients.



rate research

Read More

In this paper we prove some results on sum-product estimates over arbitrary finite fields. More precisely, we show that for sufficiently small sets $Asubset mathbb{F}_q$ we have [|(A-A)^2+(A-A)^2|gg |A|^{1+frac{1}{21}}.] This can be viewed as the ErdH{o}s distinct distances problem for Cartesian product sets over arbitrary finite fields. We also prove that [max{|A+A|, |A^2+A^2|}gg |A|^{1+frac{1}{42}}, ~|A+A^2|gg |A|^{1+frac{1}{84}}.]
228 - Jianing Li , Songsong Li , 2021
Let $D$ be a negative integer congruent to $0$ or $1bmod{4}$ and $mathcal{O}=mathcal{O}_D$ be the corresponding order of $ K=mathbb{Q}(sqrt{D})$. The Hilbert class polynomial $H_D(x)$ is the minimal polynomial of the $j$-invariant $ j_D=j(mathbb{C}/mathcal{O})$ of $mathcal{O}$ over $K$. Let $n_D=(mathcal{O}_{mathbb{Q}( j_D)}:mathbb{Z}[ j_D])$ denote the index of $mathbb{Z}[ j_D]$ in the ring of integers of $mathbb{Q}(j_D)$. Suppose $p$ is any prime. We completely determine the factorization of $H_D(x)$ in $mathbb{F}_p[x]$ if either $p mid n_D$ or $p mid D$ is inert in $K$ and the $p$-adic valuation $v_p(n_D)leq 3$. As an application, we analyze the key space of Oriented Supersingular Isogeny Diffie-Hellman (OSIDH) protocol proposed by Col`o and Kohel in 2019 which is the roots set of the Hilbert class polynomial in $mathbb{F}_{p^2}$.
141 - Chengfei Xie , Gennian Ge 2021
We study some sum-product problems over matrix rings. Firstly, for $A, B, Csubseteq M_n(mathbb{F}_q)$, we have $$ |A+BC|gtrsim q^{n^2}, $$ whenever $|A||B||C|gtrsim q^{3n^2-frac{n+1}{2}}$. Secondly, if a set $A$ in $M_n(mathbb{F}_q)$ satisfies $|A|geq C(n)q^{n^2-1}$ for some sufficiently large $C(n)$, then we have $$ max{|A+A|, |AA|}gtrsim minleft{frac{|A|^2}{q^{n^2-frac{n+1}{4}}}, q^{n^2/3}|A|^{2/3}right}. $$ These improve the results due to The and Vinh (2020), and generalize the results due to Mohammadi, Pham, and Wang (2021). We also give a new proof for a recent result due to The and Vinh (2020). Our method is based on spectral graph theory and linear algebra.
Let $G$ be a finite cyclic group. Every sequence $S$ of length $l$ over $G$ can be written in the form $S=(x_1g)cdotldotscdot(x_lg)$ where $gin G$ and $x_1, ldots, x_lin[1, ord(g)]$, and the index $ind(S)$ of $S$ is defined to be the minimum of $(x_1+cdots+x_l)/ord(g)$ over all possible $gin G$ such that $langle g rangle =G$. Recently the second and the third authors determined the index of any minimal zero-sum sequence $S$ of length 5 over a cyclic group of a prime order where $S=g^2(x_2g)(x_3g)(x_4g)$. In this paper, we determine the index of any minimal zero-sum sequence $S$ of length 5 over a cyclic group of a prime power order. It is shown that if $G=langle grangle$ is a cyclic group of prime power order $n=p^mu$ with $p geq 7$ and $mugeq 2$, and $S=(x_1g)(x_2g)(x_2g)(x_3g)(x_4g)$ with $x_1=x_2$ is a minimal zero-sum sequence with $gcd(n,x_1,x_2,x_3,x_4,x_5)=1$, then $ind(S)=2$ if and only if $S=(mg)(mg)(mfrac{n-1}{2}g)(mfrac{n+3}{2}g)(m(n-3)g)$ where $m$ is a positive integer such that $gcd(m,n)=1$.
We prove new upper bounds for a spectral exponential sum by refining the process by which one evaluates mean values of $L$-functions multiplied by an oscillating function. In particular, we introduce a method which is capable of taking into consideration the oscillatory behaviour of the function. This gives an improvement of the result of Luo and Sarnak when $Tgeq X^{1/6+2theta/3}$. Furthermore, this proves the conjecture of Petridis and Risager in some ranges. Finally, this allows obtaining a new proof of the Soundararajan-Young error estimate in the prime geodesic theorem.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا