We investigate exciton spin memory in individual InAs/GaAs self-assembled quantum dots via optical alignment and conversion of exciton polarization in a magnetic field. Quasiresonant phonon-assisted excitation is successfully employed to define the initial spin polarization of neutral excitons. The conservation of the linear polarization generated along the bright exciton eigenaxes of up to 90% and the conversion from circular- to linear polarization of up to 47% both demonstrate a very long spin relaxation time with respect to the radiative lifetime. Results are quantitatively compared with a model of pseudo-spin 1/2 including heavy-to-light hole mixing.
The spin polarization of electrons trapped in InAs self-assembled quantum dot ensembles is investigated. A statistical approach for the population of the spin levels allows one to infer the spin polarization from the measure values of the addition energies. From the magneto-capacitance spectroscopy data, the authors found a fully polarized ensemble of electronic spins above 10 T when $mathbf{B}parallel[001]$ and at 2.8 K. Finally, by including the g-tensor anisotropy the angular dependence of spin polarization with the magnetic field $mathbf{B}$ orientation and strength could be determined.
Systematic time-resolved measurements on neutral and charged excitonic complexes (X, XX, X+, and XX+) of 26 different single InAs/GaAs quantum dots are reported. The ratios of the decay times are discussed in terms of the number of transition channels determined by the excitonic fine structure and a specific transition time for each channel. The measured ratio for the neutral complexes is 1.7 deviating from the theoretically predicted value of 2. A ratio of 1.5 for the positively charged exciton and biexciton decay time is predicted and exactly matched by the measured ratio indicating identical specific transition times for the transition channels involved.
We report on the influence of hyperfine interaction on the optical orientation of singly charged excitons X+ and X- in self-assembled InAs/GaAs quantum dots. All measurements were carried out on individual quantum dots studied by micro-photoluminescence at low temperature. We show that the hyperfine interaction leads to an effective partial spin relaxation, under 50kHz modulated excitation polarization, which becomes however strongly inhibited under steady optical pumping conditions because of dynamical nuclear polarization. This optically created magnetic-like nuclear field can become very strong (up to ~4 T) when it is generated in the direction opposite to a longitudinally applied field, and exhibits then a bistability regime. This effect is very well described by a theoretical model derived in a perturbative approach, which reveals the key role played by the energy cost of an electron spin flip in the total magnetic field. Eventually, we emphasize the similarities and differences between X+ and X- trions with respect to the hyperfine interaction, which turn out to be in perfect agreement with the theoretical description.
A systematic study of the impact of annealing on the electronic properties of single InAs/GaAs quantum dots (QDs) is presented. Single QD cathodoluminescence spectra are recorded to trace the evolution of one and the same QD over several steps of annealing. A substantial reduction of the excitonic fine-structure splitting upon annealing is observed. In addition, the binding energies of different excitonic complexes change dramatically. The results are compared to model calculations within eight-band k.p theory and the configuration interaction method, suggesting a change of electron and hole wave function shape and relative position.
Excitonic polaron is directly demonstrated for the first time in InAs/GaAs quantum dots with photoluminescence method. A new peak ($s$) below the ground state of exciton ($s$) comes out as the temperature varies from 4.2 K to 285 K, and a huge anticrossing energy of 31 meV between $s$ and $s$ is observed at 225 K, which can only be explained by the formation of excitonic polaron. The results also provide a strong evidence for the invalidity of Huang-Rhys formulism in dealing with carrier-longitudinal optical phonon interaction in quantum dot. Instead, we propose a simple two-band model, and it fits the experimental data quite well. The reason for the finding of the anticrossing is also discussed.