Do you want to publish a course? Click here

Hyperfine interaction in InAs/GaAs self-assembled quantum dots : dynamical nuclear polarization versus spin relaxation

217   0   0.0 ( 0 )
 Added by Olivier Krebs
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the influence of hyperfine interaction on the optical orientation of singly charged excitons X+ and X- in self-assembled InAs/GaAs quantum dots. All measurements were carried out on individual quantum dots studied by micro-photoluminescence at low temperature. We show that the hyperfine interaction leads to an effective partial spin relaxation, under 50kHz modulated excitation polarization, which becomes however strongly inhibited under steady optical pumping conditions because of dynamical nuclear polarization. This optically created magnetic-like nuclear field can become very strong (up to ~4 T) when it is generated in the direction opposite to a longitudinally applied field, and exhibits then a bistability regime. This effect is very well described by a theoretical model derived in a perturbative approach, which reveals the key role played by the energy cost of an electron spin flip in the total magnetic field. Eventually, we emphasize the similarities and differences between X+ and X- trions with respect to the hyperfine interaction, which turn out to be in perfect agreement with the theoretical description.



rate research

Read More

The spin polarization of electrons trapped in InAs self-assembled quantum dot ensembles is investigated. A statistical approach for the population of the spin levels allows one to infer the spin polarization from the measure values of the addition energies. From the magneto-capacitance spectroscopy data, the authors found a fully polarized ensemble of electronic spins above 10 T when $mathbf{B}parallel[001]$ and at 2.8 K. Finally, by including the g-tensor anisotropy the angular dependence of spin polarization with the magnetic field $mathbf{B}$ orientation and strength could be determined.
We investigate the electronic structure of the InAs/InP quantum dots using an atomistic pseudopotential method and compare them to those of the InAs/GaAs QDs. We show that even though the InAs/InP and InAs/GaAs dots have the same dot material, their electronic structure differ significantly in certain aspects, especially for holes: (i) The hole levels have a much larger energy spacing in the InAs/InP dots than in the InAs/GaAs dots of corresponding size. (ii) Furthermore, in contrast with the InAs/GaAs dots, where the sizeable hole $p$, $d$ intra-shell level splitting smashes the energy level shell structure, the InAs/InP QDs have a well defined energy level shell structure with small $p$, $d$ level splitting, for holes. (iii) The fundamental exciton energies of the InAs/InP dots are calculated to be around 0.8 eV ($sim$ 1.55 $mu$m), about 200 meV lower than those of typical InAs/GaAs QDs, mainly due to the smaller lattice mismatch in the InAs/InP dots. (iii) The widths of the exciton $P$ shell and $D$ shell are much narrower in the InAs/InP dots than in the InAs/GaAs dots. (iv) The InAs/GaAs and InAs/InP dots have a reversed light polarization anisotropy along the [100] and [1$bar{1}$0] directions.
We use a many-body, atomistic empirical pseudopotential approach to predict the multi-exciton emission spectrum of a lens shaped InAs/GaAs self-assembled quantum dot. We discuss the effects of (i) The direct Coulomb energies, including the differences of electron and hole wavefunctions, (ii) the exchange Coulomb energies and (iii) correlation energies given by a configuration interaction calculation. Emission from the groundstate of the $N$ exciton system to the $N-1$ exciton system involving $e_0to h_0$ and $e_1to h_1$ recombinations are discussed. A comparison with a simpler single-band, effective mass approach is presented.
Built-in electrostatic fields in Zincblende quantum dots originate mainly from - (1) the fundamental crystal atomicity and the interfaces between two dissimilar materials, (2) the strain relaxation, and (3) the piezoelectric polarization. In this paper, using the atomistic NEMO 3-D simulator, we study the origin and nature of the internal fields in InAs/GaAs quantum dots with three different geometries, namely, box, dome, and pyramid. We then calculate and delineate the impact of the internal fields in the one-particle electronic states in terms of shift in the conduction band energy states, anisotropy and non-degeneracy in the P level, and formation of mixed excited bound states. Models and approaches used in this study are as follow: (1) Valence force field (VFF) with strain-dependent Keating potentials for atomistic strain relaxation; (2) 20-band nearest-neighbor sp3d5s* tight-binding model for the calculation of single-particle energy states; and (3) For piezoelectricity, for the first time within the framework of sp3d5s* tight-binding theory, four different recently-proposed polarization models (linear and non-linear) have been considered in conjunction with an atomistic 3-D Poisson solver that also takes into account the image charge effects. Specifically, in contrast to recent studies on similar quantum dots, our calculations yield a non-vanishing net piezoelectric contribution to the built-in electrostatic field. Demonstrated also is the importance of full three-dimensional (3-D) atomistic material representation and the need for using realistically-extended substrate and cap layers (systems containing ~2 million atoms) in the numerical modeling of these reduced-dimensional quantum dots.
Using a single-particle atomistic pseudopotential method followed by a many-particle configuration interaction method, we investigate the geometry, electronic structure and optical transitions of a self-assembled InAs/GaAs quantum ring (QR), changing its shape continously from a lens-shaped quantum dot (QD) to a nearly one dimensional ring. We find that the biaxial strain in the ring is strongly asymmetric in the plane perpendicular to the QR growth direction, leading to giant optical anisotropy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا