Do you want to publish a course? Click here

Neutralino dark matter from heavy axino decay

163   0   0.0 ( 0 )
 Added by Ki-Young Choi
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider cosmological consequences of a heavy axino, decaying to the neutralino in R-parity conserving models. The importance and influence of the axino decay on the resultant abundance of neutralino dark matter depends on the lifetime and the energy density of axino. For a high reheating temperature after inflation, copiously produced axinos dominate the energy density of the universe and its decay produces a large amount of entropy. As a bonus, we obtain that the upper bound on the reheating temperature after inflation via gravitino decay can be moderated, because the entropy production by the axino decay more or less dilutes the gravitinos.



rate research

Read More

We investigate the Q-ball decay into the axino dark matter in the gauge-mediated supersymmetry breaking. In our scenario, the Q ball decays mainly into nucleons and partially into axinos to account for the baryon asymmetry and the dark matter of the universe simultaneously. The Q ball decays well before the big bang nucleosynthesis so that it is not affected by the decay. The decay into the supersymmetric particles of the minimal supersymmetric standard model is kinematically prohibited until the very end of the decay, and we could safely make their abundances small enough for the successful big bang nucleosynthesis. We show the regions of axino model parameters and the Q-ball parameters which realize this scenario.
We revisit indirect detection possibilities for neutralino dark matter, emphasizing the complementary roles of different approaches. While thermally produced dark matter often requires large astrophysical boost factors to observe antimatter signals, the physically motivated alternative of non-thermal dark matter can naturally provide interesting signals, for example from light wino or Higgsino dark matter. After a brief review of cosmic ray propagation, we discuss signals for positrons, antiprotons, synchrotron radiation and gamma rays from wino annihilation in the galactic halo, and examine their phenomenology. For pure wino dark matter relevant to the LHC, PAMELA and GLAST should report signals.
In the supersymmetric (SUSY) standard model, the lightest neutralino may be the lightest SUSY particle (LSP), and it is is a candidate of the dark matter in the universe. The LSP dark matter might be produced by the non-thermal process such as heavy particle decay after decoupling of the thermal relic LSP. If the produced LSP is relativistic, and does not scatter enough in the thermal bath, the neutralino LSP may contribute as the warm dark matter (WDM) to wash out the small scale structure of O(0.1) Mpc. In this letter we calculate the energy reduction of the neutralino LSP in the thermal bath and study whether the LSP can be the WDM. If temperature of the production time T_I is smaller than 5MeV, the bino-like LSP can be the WDM and may contribute to the small-scale structure of O(0.1) Mpc. The Higgsino-like LSP might also work as the WDM if T_I< 2MeV. The wino-like LSP cannot be the WDM in the favoured parameter region.
205 - Ki-Young Choi , Osamu Seto 2014
We consider axino warm dark matter in a supersymmetric axion model with R-parity violation. In this scenario, axino with the mass $m_axinosimeq 7$ keV can decay into photon and neutrino resulting in the X-ray line signal at $3.5$ keV, which might be the origin of unidentified X-ray emissions from galaxy clusters and Andromeda galaxy detected by the XMM-Newton X-ray observatory.
134 - Jihn E. Kim 2008
I discuss the essential features of the QCD axion: the strong CP solution and hence its theoretical necessity. I also review the axion and axino effects on astrophysics and cosmology, in particular with emphasis on their role in the dark matter component in the universe.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا