No Arabic abstract
It is demonstrated that in photoabsorption by endohedral atoms some atomic Giant resonances are almost completely destroyed while the others are totally preserved due to different action on it of the fullerenes shell. As the first example we discuss the 4d10 Giant resonance in Xe@C60 whereas as the second serves the Giant autoionization resonance in Eu@C60. The qualitative difference comes from the fact that photoelectrons from the 4d Giant resonance has small energies (tens of eV) and are strongly reflected by the C60 fullerenes shell. As to the Eu@C60, Giant autoionization leads to fast photoelectrons (about hundred eV) that go out almost untouched by the C60 shell. As a result of the outgoing electrons energy difference the atomic Giant resonances will be largely destroyed in A@C60 while the Giant autoionization resonance will be almost completely preserved. Thus, on the way from Xe@C60 Giant resonance to Eu@C60 Giant autoionization resonance the oscillation structure should disappear. Similar will be the decrease of oscillations on the way from pure Giant to pure Giant autoionization resonances for the angular anisotropy parameters. At Giant resonance frequencies the role of polarization of the fullerenes shell by the incoming photon beam is inessential. Quite different is the situation for the outer electrons in Eu@C60, the photoionization of which will be also considered.
We have calculated partial contributions of different endohedral and atomic subshells to the total dipole sum rule in the frame of the random phase approximation with exchange (RPAE) and found that they are essentially different from the numbers of electrons in respective subshells. This difference manifests the strength of the intershell interaction. We present concrete results of calculations for endohedrals, composed of fullerene C60 and all noble gases He, Ne, Ar, Kr and Xe thus forming respectively He@C60, Ne@C60, Ar@C60, Kr@C60, and Xe@C60. For comparison we obtained similar results for isolated noble gas atoms. The deviation from number of electrons in outer subshells proved to be much bigger in endohedrals than in isolated atoms thus demonstrating considerably stronger intershell correlations there.
Inter-Coulombic decay (ICD) resonances in the photoionization of Cl@C60 endofullerene molecule are calculated using a perturbative density functional theory (DFT) method. This is the first ICD study of an open shell atom in a fullerene cage. Three classes of resonances are probed: (i) Cl inner vacancies decaying through C60 outer continua, (ii) C60 inner vacancies decaying through Cl outer continua, and (iii) inner vacancies of either system decaying through the continua of Cl-C60 hybrid levels, the hybrid Auger-ICD resonances. Comparisons with Ar@C60 results reveal that the properties of hybrid Auger-ICD resonances are affected by the extent of level hybridization.
Our previous studies [J. Phys. B 53, 125101 (2020); Euro. Phys. J. D 74, 191 (2020)] have predicted that the atom-fullerene hybrid photoionization properties for X = Cl, Br and I endohedrally confined in C60 are different before and after an electron transfers from C60 to the halogen. It was further found as a rule that the ionization dynamics is insensitive to the C60 level the electron originates from to produce X-@C60+. In the current study, we report an exception to this rule in F@C60. It is found that when the electron vacancy is situated in the C60 level that participates in the hybridization in F-@C60+, the mixing becomes dramatically large leading to strong modifications in the photoionization of the hybrid levels. But when the vacancy is at any other pure level of C60, the level-invariance is retained showing weak hybridization. Even though this case of F@C60 is an anomaly in the halogen@C60 series, the phenomenon can be more general and can occur with compounds of other atoms caged in a variety of fullerenes. In addition, possible experimental studies are suggested to benchmark the present results.
We re-examine the series of resonances found earlier in atomic three-body systems by solving the Faddeev-Merkuriev integral equations. These resonances are rather broad and line-up at each threshold with gradually increasing gaps, the same way for all thresholds and irrespective of the spatial symmetry. We relate these resonances to the Gailitis mechanism, which is a consequence of the polarization potential.
Electron relaxation is studied in endofullerene Mg@C60, after an initial localized photoexcitation in Mg, by nonadiabtic molecular dynamics simulations. To ensure reliability, two methods are used: i) an independent particle approach with a DFT description of the ground state and ii) HF ground state with many-body effects for the excited state dynamics. Both methods exhibit similar relaxation times leading to an ultrafast decay and charge transfer from Mg to C60 within tens of femtoseconds. Method (i) further elicits a robust transient-trap of the transferred electron that can delay the electron-hole recombination. Results shall motivate experiments to probe these ultrafast processes by two-photon transient absorption spectroscopy in gas phase, in solution, or as thin films.