Do you want to publish a course? Click here

X-ray properties of protostars in the Orion Nebula

207   0   0.0 ( 0 )
 Added by Loredana Prisinzano
 Publication date 2007
  fields Physics
and research's language is English
 Authors L. Prisinzano




Ask ChatGPT about the research

The origin and evolution of the X-rays in very young stellar objects (YSOs) are not yet well understood since it is very hard to observe YSOs in the protostellar phase. We study the X-ray properties of Class 0-I objects in the Orion Nebula Cluster (ONC) and compare them with those of the more evolved Class II and III members. Using Chandra Orion Ultradeep Project (COUP) data, we study the X-ray properties of stars in different evolutionary classes: luminosities, NH, temperatures and time variability are compared in order to understand if the interaction between the circumstellar material and the central object can influence the X-ray emission. We have assembled the deepest and most complete photometric catalog of objects in the ONC region from the UV to 8 microns using data from HST, [email protected] ESO and ISPI@4m CTIO telescopes, and Spitzer IRAC. We select high probability candidate Class 0-I protostars, distinguishing between those having a spectral energy distribution which rises from K up to 8 microns (Class 0-Ia) from those where the SED rises from K up to 4.5 microns and decreasing afterwards (Class 0-Ib). We select a sample of bona fide Class II stars and a set of Class III stars with IR emission consistent with normal photospheres. Our principal result is that Class 0-Ia objects are significantly less luminous in X-rays, both in the total and hard bands, than the more evolved Class II stars with mass larger than 0.5 Msun; these latter show X-ray luminosities similar to those of Class 0-Ib stars. This result supports the hypothesis that the onset of X-ray emission occurs at a very early stage of star formation. Temporal variability and spectral properties of Class 0-I stars are similar to those of the more evolved Class II and III objects, except for a larger absorption likely due to gas in the circumstellar material.



rate research

Read More

The Orion Nebula Cluster and the molecular cloud in its vicinity have been observed with the ACIS-I detector on board the Chandra X-ray Observatory with 23 hours exposure. We detect 1075 X-ray sources: 91% are spatially associated with known stellar members of the cluster, and 7% are newly identified deeply embedded cloud members. This provides the largest X-ray study of a pre-main sequence stellar population. We examine here the X-ray properties of Orion young stars as a function of mass. Results include: (a) the discovery of rapid variability in the O9.5 31 M_o star theta^2A Ori, and several early B stars, inconsistent with the standard model of X-ray production in small wind shocks; (b) support for the hypothesis that intermediate-mass mid-B through A type stars do not themselves produce significant X-ray emission; (c) confirmation that low-mass G- through M-type T Tauri stars exhibit powerful flaring but typically at luminosities considerably below the `saturation level; (d) confirmation that the presence or absence of a circumstellar disk has no discernable effect on X-ray emission; (e) evidence that T Tauri plasma temperatures are often very high with T >= 100 MK, even when luminosities are modest and flaring is not evident; and (f) detection of the largest sample of pre-main sequence very low mass objects showing high flaring levels and a decline in magnetic activity as they evolve into L- and T-type brown dwarfs.
We use the sensitive X-ray data from the Chandra Orion Ultradeep Project (COUP) to study the X-ray properties of 34 spectroscopically-identified brown dwarfs with near-infrared spectral types between M6 and M9 in the core of the Orion Nebula Cluster. Nine of the 34 objects are clearly detected as X-ray sources. The apparently low detection rate is in many cases related to the substantial extinction of these brown dwarfs; considering only the BDs with $A_V leq 5$ mag, nearly half of the objects (7 out of 16) are detected in X-rays. Our 10-day long X-ray lightcurves of these objects exhibit strong variability, including numerous flares. While one of the objects was only detected during a short flare, a statistical analysis of the lightcurves provides evidence for continuous (`quiescent) emission in addition to flares for all other objects. Of these, the $sim$ M9 brown dwarf COUP 1255 = HC 212 is one of the coolest known objects with a clear detection of quiescent X-ray emission. The X-ray properties (spectra, fractional X-ray luminosities, flare rates) of these young brown dwarfs are similar to those of the low-mass stars in the ONC, and thus there is no evidence for changes in the magnetic activity around the stellar/substellar boundary, which lies at $sim$ M6 for ONC sources. Since the X-ray properties of the young brown dwarfs are also similar to those of M6--M9 field stars, the key to the magnetic activity in very cool objects seems to be the effective temperature, which determines the degree of ionization in the atmosphere.
68 - Nicolas Grosso 2006
We report the detection during the Chandra Orion Ultradeep Project (COUP) of two soft, constant, and faint X-ray sources associated with the Herbig-Haro object HH210. HH210 is located at the tip of the NNE finger of the emission line system bursting out of the BN-KL complex, northwest of the Trapezium cluster in the OMC-1 molecular cloud. Using a recent Halpha image obtained with the ACS imager on board HST, and taking into account the known proper motions of HH210 emission knots, we show that the position of the brightest X-ray source, COUP703, coincides with the emission knot 154-040a of HH210, which is the emission knot of HH210 having the highest tangential velocity (425 km/s). The second X-ray source, COUP704, is located on the complicated emission tail of HH210 close to an emission line filament and has no obvious optical/infrared counterpart. Spectral fitting indicates for both sources a plasma temperature of ~0.8 MK and absorption-corrected X-ray luminosities of about 1E30 erg/s (0.5-2.0 keV). These X-ray sources are well explained by a model invoking a fast-moving, radiative bow shock in a neutral medium with a density of ~12000 cm^{-3}. The X-ray detection of COUP704 therefore reveals, in the complicated HH210 region, an energetic shock not yet identified at other wavelengths.
(Abridged) Context: Both X-ray and radio observations offer insight into the high-energy processes of young stellar objects (YSOs). The observed thermal X-ray emission can be accompanied by both thermal and nonthermal radio emission. Due to variability, simultaneous X-ray and radio observations are a priori required, but results have been inconclusive. Aims: We use archival X-ray and radio observations of the Orion Nebula Cluster (ONC) to significantly enlarge the sample size of known YSOs with both X-ray and radio detections. Methods: We study the ONC using multi-epoch non-simultaneous archival Chandra X-ray and NRAO Very Large Array (VLA) single-band radio data. The multiple epochs allow us to reduce the impact of variability by obtaining approximated quiescent fluxes. Results: We find that only a small fraction of the X-ray sources (7%) have radio counterparts, even if 60% of the radio sources have X-ray counterparts. The radio flux density is typically too low to distinguish thermal and nonthermal radio sources. Only a small fraction of the YSOs with detections in both bands are compatible with the empirical Guedel-Benz (GB) relation. Most of the sources not compatible with the GB relation are proplyds, and thus likely thermal sources, but only a fraction of the proplyds is detected in both bands, such that the role of these sources is inconclusive. Conclusions: While the radio sources appear to be globally unrelated to the X-ray sources, the X-ray dataset clearly is much more sensitive than the radio data. We find tentative evidence that known non-thermal radio sources and saturated X-ray sources are indeed close to the empirical relation, even if skewed to higher radio luminosities, as they are expected to be. Most of the sources that are clearly incompatible with the empirical relation are proplyds which could instead plausibly be thermal radio sources.
Our general understanding of multiple star and planet formation is primarily based on observations of young multiple systems in low density regions like Tau-Aur and Oph. Since many, if not most, of the stars are born in clusters, observational constraints from young binaries in those environments are fundamental for understanding both the formation of multiple systems and planets in multiple systems throughout the Galaxy. We build upon the largest survey for young binaries in the Orion Nebula Cluster (ONC) which is based on Hubble Space Telescope observations to derive both stellar and circumstellar properties of newborn binary systems in this cluster environment. We present Adaptive Optics spatially-resolved JHKL-band photometry and K-band R$sim$,5000 spectra for a sample of 8 ONC binary systems from this database. We characterize the stellar properties of binary components and obtain a census of protoplanetary disks through K-L color excess. For a combined sample of ONC binaries including 7 additional systems with NIR spectroscopy from the literature, we derive mass ratio and relative age distributions. We compare the stellar and circumstellar properties of binaries in ONC with those in Tau-Aur and Oph from samples of binaries with stellar properties derived for each component from spectra and/or visual photometry and with a disk census obtained through K-L color excess. The mass ratio distribution of ONC binaries is found to be indistinguishable from that of Tau-Aur and, to some extent, to that of Oph in the separation range 85-560,AU and for primary mass in the range 0.15 to 0.8,M$_{sun}$.A trend toward a lower mass ratio with larger separation is suggested in ONC binaries which is not seen in Tau-Aur binaries.The components of ONC binaries are found to be significantly more coeval than the overall ONC population and as coeval as components of binaries in Tau-Aur and Oph[...]
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا