Do you want to publish a course? Click here

Direct demonstration of the completeness of the eigenstates of the Schrodinger equation with local and non-local potentials bearing a Coulomb tail

129   0   0.0 ( 0 )
 Added by Nicolas Michel
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Demonstrating the completeness of wave functions solutions of the radial Schrodinger equation is a very difficult task. Existing proofs, relying on operator theory, are often very abstract and far from intuitive comprehension. However, it is possible to obtain rigorous proofs amenable to physical insight, if one restricts the considered class of Schrodinger potentials. One can mention in particular unbounded potentials yielding a purely discrete spectrum and short-range potentials. However, those possessing a Coulomb tail, very important for physical applications, have remained problematic due to their long-range character. The method proposed in this paper allows to treat them correctly, provided the non-Coulomb part of potentials vanishes after a finite radius. Non-locality of potentials can also be handled. The main idea in the proposed demonstration is that regular solutions behave like sine/cosine functions for large momenta, so that their expansions verify Fourier transform properties. The highly singular point at k = 0 of long-range potentials is dealt with properly using analytical properties of Coulomb wave functions. Lebesgue measure theory is avoided, rendering the demonstration clear from a physical point of view.



rate research

Read More

We consider the Landau Hamiltonian $H_0$, self-adjoint in $L^2({mathbb R^2})$, whose spectrum consists of an arithmetic progression of infinitely degenerate positive eigenvalues $Lambda_q$, $q in {mathbb Z}_+$. We perturb $H_0$ by a non-local potential written as a bounded pseudo-differential operator ${rm Op}^{rm w}({mathcal V})$ with real-valued Weyl symbol ${mathcal V}$, such that ${rm Op}^{rm w}({mathcal V}) H_0^{-1}$ is compact. We study the spectral properties of the perturbed operator $H_{{mathcal V}} = H_0 + {rm Op}^{rm w}({mathcal V})$. First, we construct symbols ${mathcal V}$, possessing a suitable symmetry, such that the operator $H_{mathcal V}$ admits an explicit eigenbasis in $L^2({mathbb R^2})$, and calculate the corresponding eigenvalues. Moreover, for ${mathcal V}$ which are not supposed to have this symmetry, we study the asymptotic distribution of the eigenvalues of $H_{mathcal V}$ adjoining any given $Lambda_q$. We find that the effective Hamiltonian in this context is the Toeplitz operator ${mathcal T}_q({mathcal V}) = p_q {rm Op}^{rm w}({mathcal V}) p_q$, where $p_q$ is the orthogonal projection onto ${rm Ker}(H_0 - Lambda_q I)$, and investigate its spectral asymptotics.
Analytical solutions of the Schrodinger equation are obtained for some diatomic molecular potentials with any angular momentum. The energy eigenvalues and wave functions are calculated exactly. The asymptotic form of the equation is also considered. Algebraic method is used in the calculations.
We investigate the local energy decay of solutions of the Dirac equation in the non-extreme Kerr-Newman metric. First, we write the Dirac equation as a Cauchy problem and define the Dirac operator. It is shown that the Dirac operator is selfadjoint in a suitable Hilbert space. With the RAGE theorem, we show that for each particle its energy located in any compact region outside of the event horizon of the Kerr-Newman black hole decays in the time mean.
220 - Andrzej Okninski 2011
Recently, we have demonstrated that some subsolutions of the free Duffin-Kemmer-Petiau and the Dirac equations obey the same Dirac equation with some built-in projection operators. In the present paper we study the Dirac equation in the interacting case. It is demonstrated that the Dirac equation in longitudinal external fields can be also splitted into two covariant subequations.
77 - D. Borthwick , S. Graffi 2004
Consider in $L^2 (R^l)$ the operator family $H(epsilon):=P_0(hbar,omega)+epsilon Q_0$. $P_0$ is the quantum harmonic oscillator with diophantine frequency vector $om$, $Q_0$ a bounded pseudodifferential operator with symbol holomorphic and decreasing to zero at infinity, and $epinR$. Then there exists $ep^ast >0$ with the property that if $|ep|<ep^ast$ there is a diophantine frequency $om(ep)$ such that all eigenvalues $E_n(hbar,ep)$ of $H(ep)$ near 0 are given by the quantization formula $E_alpha(hbar,ep)= {cal E}(hbar,ep)+laom(ep),alpharahbar +|om(ep)|hbar/2 + ep O(alphahbar)^2$, where $alpha$ is an $l$-multi-index.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا