Do you want to publish a course? Click here

Dynamical Coupled-Channels Effects on Pion Photoproduction

262   0   0.0 ( 0 )
 Added by Bruno Julia Diaz
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

The electromagnetic pion production reactions are investigated within the dynamical coupled-channels model developed in {bf Physics Reports, 439, 193 (2007)}. The meson-baryon channels included in this study are $gamma N$, $pi N$, $eta N$, and the $piDelta$, $rho N$ and $sigma N$ resonant components of the $pipi N$ channel. With the hadronic parameters of the model determined in a recent study of $pi N$ scattering, we show that the pion photoproduction data up to the second resonance region can be described to a very large extent by only adjusting the bare $gamma N to N^*$ helicity amplitudes, while the non-resonant electromagnetic couplings are taken from previous works. It is found that the coupled-channels effects can contribute about 10 - 20 % of the production cross sections in the $Delta$ (1232) resonance region, and can drastically change the magnitude and shape of the cross sections in the second resonance region. The importance of the off-shell effects in a dynamical approach is also demonstrated. The meson cloud effects as well as the coupled-channels contributions to the $gamma N to N^*$ form factors are found to be mainly in the low $Q^2$ region. For the magnetic M1 $gamma N to Delta$ (1232) form factor, the results are close to that of the Sato-Lee Model. Necessary improvements to the model and future developments are discussed.



rate research

Read More

Within a dynamical coupled-channels model which has already been fixed from analyzing the data of the pi N -> pi N and gamma N -> pi N reactions, we present the predicted double pion photoproduction cross sections up to the second resonance region, W< 1.7 GeV. The roles played by the different mechanisms within our model in determining both the single and double pion photoproduction reactions are analyzed, focusing on the effects due to the direct gamma N -> pi pi N mechanism, the interplay between the resonant and non-resonant amplitudes, and the coupled-channels effects. The model parameters which can be determined most effectively in the combined studies of both the single and double pion photoproduction data are identified for future studies.
Background: Near-barrier fusion can be strongly affected by the coupling between relative motion and internal degrees of freedom of the collision partners. The time-dependent Hartree-Fock (TDHF) theory and the coupled-channels (CC) method are standard approaches to investigate this aspect of fusion dynamics. However, both approaches present limitations, such as a lack of tunnelling of the many-body wave function in the former and a need for external parameters to describe the nucleus-nucleus potential and the couplings in the latter. Method: A method combining both approaches is proposed to overcome these limitations. CC calculations are performed using two types of inputs from Hartree-Fock (HF) theory: the nucleus-nucleus potential calculated with the frozen HF method, and the properties of low-lying vibrational states and giant resonances computed from the TDHF linear response. Results: The effect of the couplings to vibrational modes is studied in the $^{40}$Ca$+^{40}$Ca and $^{56}$Ni$+^{56}$Ni systems. This work demonstrates that the main effect of these couplings is a lowering of the barrier, in good agreement with the fusion thresholds predicted by TDHF calculations. Conclusions: As the only phenomenological inputs are the choice of the internal states of the nuclei and the parameters of the energy density functional used in the HF and TDHF calculations, the method presented in this work has a broad range of possible applications, including studies of alternative couplings or reactions involving exotic nuclei.
603 - Lothar Tiator 2012
The possibilities of a model-independent partial wave analysis for pion, eta or kaon photoproduction are discussed in the context of complete experiments. It is shown that the helicity amplitudes obtained from at least 8 polarization observables including beam, target and recoil polarization can not be used to analyze nucleon resonances. However, a truncated partial wave analysis, which requires only 5 observables will be possible with minimal model assumptions.
We have performed a dynamical coupled-channels analysis of available p(e,epi)N data in the region of W < 1.6 GeV and Q^2 < 1.45 (GeV/c)^2. The channels included are gamma^* N, pi N, eta N, and pi pi N which has pi Delta, rho N, and sigma N components. With the hadronic parameters of the model determined in our previous investigations of pi N --> pi N, pi pi N reactions, we have found that the available data in the considered W < 1.6 GeV region can be fitted well by only adjusting the bare gamma^* N --> N^* helicity amplitudes for the lowest N^* states in P33, P11, S11 and D13 partial waves. The sensitivity of the resulting parameters to the amount of data included in the analysis is investigated. The importance of coupled-channels effect on the p(e,e pi)N cross sections is demonstrated. The meson cloud effects, as required by the unitarity conditions, on the gamma^* N --> N^* form factors are also examined. Necessary future developments, both experimentally and theoretically, are discussed.
As a step toward performing a complete coupled-channels analysis of the world data of pi N, gamma^* N --> pi N, eta N, pi pi N reactions, the pi N --> pi pi N reactions are investigated starting with the dynamical coupled-channels model developed in Phys. Rev. C76, 065201 (2007). The channels included are pi N, eta N, and pi pi N which has pi Delta, rho N, and sigma N resonant components. The non-resonant amplitudes are generated from solving a set of coupled-channels equations with the meson-baryon potentials defined by effective Lagrangians. The resonant amplitudes are generated from 16 bare excited nucleon (N^*) states which are dressed by the non-resonant interactions as constrained by the unitarity condition. The data of total cross sections and pi N and pi pi invariant mass distributions of pi^+ p --> pi^+ pi^+ n, pi^+ pi^0p and pi^- p --> pi^+ pi^- n, pi^- pi^0 n, pi^0 pi^0 n reactions from threshold to the invariant mass W = 2 GeV can be described to a very large extent. We show the importance of the coupled-channels effects and the strong interference between the contributions from the pi Delta, sigma N, and rho N channels. The large interference between the resonant and non-resonant amplitudes is also demonstrated. Possible future developements are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا