Do you want to publish a course? Click here

Stabilization of Solitons Generated by a Supersonic Flow of Bose-Einstein Condensate Past an Obstacle

303   0   0.0 ( 0 )
 Added by A. M. Kamchatnov
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Stability of dark solitons generated by a supersonic flow of Bose-Einstein condensate past an obstacle is investigated. It is shown that in the reference frame attached to the obstacle a transition occurs at some critical value of the flow velocity from absolute instability of dark solitons to their convective instability. This leads to decay of disturbances of solitons at fixed distance from the obstacle and formation of effectively stable dark solitons. This phenomenon explains surprising stability of the flow picture that has been observed in numerical simulations.



rate research

Read More

Generation of wave structures by a two-dimensional object (laser beam) moving in a two-dimensional two-component Bose-Einstein condensate with a velocity greater than both sound velocities of the mixture is studied by means of analytical methods and systematic simulations of the coupled Gross-Pitaevskii equations. The wave pattern features three regions separated by two Mach cones. Two branches of linear patterns similar to the so-called ship waves are located outside the corresponding Mach cones, and oblique dark solitons are found inside the wider cone. An analytical theory is developed for the linear patterns. A particular dark-soliton solution is also obtained, its stability is investigated, and two unstable modes of transverse perturbations are identified. It is shown that, for a sufficiently large flow velocity, this instability has a convective character in the reference frame attached to the moving body, which makes the dark soliton effectively stable. The analytical findings are corroborated by numerical simulations.
176 - A. S. Rodrigues 2008
We study the flow of a spinor (F=1) Bose-Einstein condensate in the presence of an obstacle. We consider the cases of ferromagnetic and polar spin-dependent interactions and find that the system demonstrates two speeds of sound that are identified analytically. Numerical simulations reveal the nucleation of macroscopic nonlinear structures, such as dark solitons and vortex-antivortex pairs, as well as vortex rings in one- and higher-dimensional settings respectively, when a localized defect (e.g., a blue-detuned laser beam) is dragged through the spinor condensate at a speed larger than the second critical speed.
We investigate the flow of a one-dimensional nonlinear Schrodinger model with periodic boundary conditions past an obstacle, motivated by recent experiments with Bose--Einstein condensates in ring traps. Above certain rotation velocities, localized solutions with a nontrivial phase profile appear. In striking difference from the infinite domain, in this case there are many critical velocities. At each critical velocity, the steady flow solutions disappear in a saddle-center bifurcation. These interconnected branches of the bifurcation diagram lead to additions of circulation quanta to the phase of the associated solution. This, in turn, relates to the manifestation of persistent current in numerous recent experimental and theoretical works, the connections to which we touch upon. The complex dynamics of the identified waveforms and the instability of unstable solution branches are demonstrated.
Formation of stationary 3D wave patterns generated by a small point-like impurity moving through a Bose-Einstein condensate with supersonic velocity is studied. Asymptotic formulae for a stationary far-field density distribution are obtained. Comparison with three-dimensional numerical simulations demonstrates that these formulae are accurate enough already at distances from the obstacle equal to a few wavelengths.
The stability of dark solitons generated by a supersonic flow of a Bose-Einstein condensate past a concave corner (or a wedge) is studied. It is shown that solitons in the dispersive shock wave generated at the initial moment of time demonstrate a snake instability during their evolution to stationary curved solitons. Time of decay of soliton to vortices agrees very well with analytical estimates of the instability growth rate.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا