No Arabic abstract
Quantum mechanical superexchange interactions form the basis of quantum magnetism in strongly correlated electronic media. We report on the direct measurement of superexchange interactions with ultracold atoms in optical lattices. After preparing a spin-mixture of ultracold atoms in an antiferromagnetically ordered state, we measure a coherent superexchange-mediated spin dynamics with coupling energies from 5 Hz up to 1 kHz. By dynamically modifying the potential bias between neighboring lattice sites, the magnitude and sign of the superexchange interaction can be controlled, thus allowing the system to be switched between antiferromagnetic or ferromagnetic spin interactions. We compare our findings to predictions of a two-site Bose-Hubbard model and find very good agreement, but are also able to identify corrections which can be explained by the inclusion of direct nearest-neighbor interactions.
The dynamical control of tunneling processes of single particles plays a major role in science ranging from Shapiro steps in Josephson junctions to the control of chemical reactions via light in molecules. Here we show how such control can be extended to the regime of strongly interacting particles. Through a weak modulation of a biased tunnel contact, we have been able to coherently control single particle and correlated two-particle hopping processes. We have furthermore been able to extend this control to superexchange spin interactions in the presence of a magnetic-field gradient. We show how such photon assisted superexchange processes constitute a novel approach to realize arbitrary XXZ spin models in ultracold quantum gases, where transverse and Ising type spin couplings can be fully controlled in magnitude and sign.
Scalable, coherent many-body systems can enable the realization of previously unexplored quantum phases and have the potential to exponentially speed up information processing. Thermal fluctuations are negligible and quantum effects govern the behavior of such systems with extremely low temperature. We report the cooling of a quantum simulator with 10,000 atoms and mass production of high-fidelity entangled pairs. In a two-dimensional plane, we cool Mott insulator samples by immersing them into removable superfluid reservoirs, achieving an entropy per particle of $1.9^{+1.7}_{-0.4} times 10^{-3} k_{text{B}}$. The atoms are then rearranged into a two-dimensional lattice free of defects. We further demonstrate a two-qubit gate with a fidelity of 0.993 $pm$ 0.001 for entangling 1250 atom pairs. Our results offer a setting for exploring low-energy many-body phases and may enable the creation of large-scale entanglement
We demonstrate the experimental implementation of an optical lattice that allows for the generation of large homogeneous and tunable artificial magnetic fields with ultracold atoms. Using laser-assisted tunneling in a tilted optical potential we engineer spatially dependent complex tunneling amplitudes. Thereby atoms hopping in the lattice accumulate a phase shift equivalent to the Aharonov-Bohm phase of charged particles in a magnetic field. We determine the local distribution of fluxes through the observation of cyclotron orbits of the atoms on lattice plaquettes, showing that the system is described by the Hofstadter model. Furthermore, we show that for two atomic spin states with opposite magnetic moments, our system naturally realizes the time-reversal symmetric Hamiltonian underlying the quantum spin Hall effect, i.e., two different spin components experience opposite directions of the magnetic field.
We measure the superradiant emission in a one-dimensional (1D) superradiance lattice (SL) in ultracold atoms. Resonantly excited to a superradiant state, the atoms are further coupled to other collectively excited states, which form a 1D SL. The directional emission of one of the superradiant excited states in the 1D SL is measured. The emission spectra depend on the band structure, which can be controlled by the frequency and intensity of the coupling laser fields. This work provides a platform for investigating the collective Lamb shift of resonantly excited superradiant states in Bose-Einstein condensates and paves the way for realizing higher dimensional superradiance lattices.
We propose to realize one-dimensional topological phases protected by SU($N$) symmetry using alkali or alkaline-earth atoms loaded into a bichromatic optical lattice. We derive a realistic model for this system and investigate it theoretically. Depending on the parity of $N$, two different classes of symmetry-protected topological (SPT) phases are stabilized at half-filling for physical parameters of the model. For even $N$, the celebrated spin-1 Haldane phase and its generalization to SU($N$) are obtained with no local symmetry breaking. In stark contrast, at least for $N=3$, a new class of SPT phases, dubbed chiral Haldane phases, that spontaneously break inversion symmetry, emerge with a two-fold ground-state degeneracy. The latter ground states with open-boundary conditions are characterized by different left and right boundary spins which are related by conjugation. Our results show that topological phases are within close reach of the latest experiments on cold fermions in optical lattices.